29146894 2017 11 21
2041-1723 8 1 2017 Nov 17 Nature communications Nat Commun Odd viscosity in chiral active fluids. 1573 10.1038/s41467-017-01378-7 We study the hydrodynamics of fluids composed of self-spinning objects such as chiral grains or colloidal particles subject to torques. These chiral active fluids break both parity and time-reversal symmetries in their non-equilibrium steady states. As a result, the constitutive relations of chiral active media display a dissipationless linear-response coefficient called odd (or equivalently, Hall) viscosity. This odd viscosity does not lead to energy dissipation, but gives rise to a flow perpendicular to applied pressure. We show how odd viscosity arises from non-linear equations of hydrodynamics with rotational degrees of freedom, once linearized around a non-equilibrium steady state characterized by large spinning speeds. Next, we explore odd viscosity in compressible fluids and suggest how our findings can be tested in the context of shock propagation experiments. Finally, we show how odd viscosity in weakly compressible chiral active fluids can lead to density and pressure excess within vortex cores. Banerjee Debarghya D Instituut-Lorentz, Universiteit Leiden, Niels Bohrweg 2, Leiden, 2333 CA, The Netherlands. Souslov Anton A http://orcid.org/0000-0001-7735-100X Instituut-Lorentz, Universiteit Leiden, Niels Bohrweg 2, Leiden, 2333 CA, The Netherlands. The James Franck Institute and Department of Physics, The University of Chicago, Chicago, IL, 60637, USA. Abanov Alexander G AG Department of Physics and Astronomy and Simons Center for Geometry and Physics, Stony Brook University, Stony Brook, NY, 11794, USA. Vitelli Vincenzo V http://orcid.org/0000-0001-6328-8783 Instituut-Lorentz, Universiteit Leiden, Niels Bohrweg 2, Leiden, 2333 CA, The Netherlands. vitelli@uchicago.edu. The James Franck Institute and Department of Physics, The University of Chicago, Chicago, IL, 60637, USA. vitelli@uchicago.edu. eng Journal Article 2017 11 17
England Nat Commun 101528555 2041-1723 Phys Rev Lett. 2015 Apr 17;114(15):158102 25933342 Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Mar;91(3):032502 25871133 Science. 2005 Jul 8;309(5732):300-3 16002619 Nat Mater. 2003 Dec;2(12):806-9 14625540 Proc Natl Acad Sci U S A. 2015 Aug 25;112(34):E4642-50 26253763 Phys Rev Lett. 2014 Feb 21;112(7):075701 24579615 Phys Rev Lett. 2009 Apr 24;102(16):168101 19518757 Phys Rev Lett. 2014 Jul 18;113(3):034501 25083647 Eur Phys J E Soft Matter. 2012 Sep;35(9):89 23001784 Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Dec;90(6):063005 25615185 Phys Rev Lett. 2016 Apr 29;116(17):178301 27176542 Phys Rev Lett. 2015 May 8;114(18):188301 26001020 Phys Rev Lett. 2005 Jun 3;94(21):214301 16090323 Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jan;89(1):010302 24580155 Phys Rev Lett. 2010 Apr 30;104(17):178103 20482146 Phys Rev Lett. 1995 Jul 24;75(4):697-700 10060091 Phys Rev Lett. 2003 Sep 5;91(10):108104 14525512 Phys Rev Lett. 2009 Oct 2;103(14):144503 19905572 Nat Commun. 2015 Jul 29;6:7855 26220862 Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):12919-12924 27803323 Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Apr;89(4):043019 24827344 Nature. 2012 Mar 21;483(7390):448-52 22437613
2017 02 19 2017 09 12 2017 11 18 6 0 2017 11 18 6 0 2017 11 18 6 0 epublish 29146894 10.1038/s41467-017-01378-7 10.1038/s41467-017-01378-7 PMC5691086