## Large-scale screening of intracellular protein localization in living fission yeast cells by the use of a GFP-fusion genomic DNA library

# Da-Qiao Ding, Yuki Tomita, Ayumu Yamamoto, Yuji Chikashige, Tokuko Haraguchi and Yasushi Hiraoka\*

Structural Biology Section and CREST Research Project, Kansai Advanced Research Center, Communications Research Laboratory, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan

### Abstract

*Background*: Intracellular localization is an important part of the characterization of a gene product. In an attempt to search for genes based on the intracellular localization of their products, we constructed a green fluorescent protein (GFP)-fusion genomic DNA library of *S. pombe*.

*Results*: We constructed the *S. pombe* GFP-fusion genomic DNA library by fusing, in all three reading frames, random fragments of genomic DNA to the 5' end of the GFP gene in such a way that expression of potential GFP-fusion proteins would be under the control of the own promoters contained in the genomic DNA fragments. Fission yeast cells were transformed with this plasmid library, and microscopic screening of 49 845 transformants yielded 6954 transformants which exhibited GFP fluorescence, of

## Introduction

The intracellular localization of its product can offer important clues as to the function of an unknown gene. Recently, there have been several reports on the construction and screening of DNA libraries designed to allow an intracellular visualization of expressed gene products: the genome of the budding yeast *Saccharomyces cerevisiae* was screened using LacZ-fusion constructs, and a number of genes were successfully categorized based on their localization patterns (Burns *et al.* 1994); in the fission yeast *Schizosaccharomyces pombe* a GFP-fusion genomic library that had been constructed utilizing the inducible nmt1 promoter, was first screened for DNA fragments which affected mitotic cell growth when

Communicated by: Mitsuhiro Yanagida

\* Correspondence: E-mail: yasushi@crl.go.jp

© Blackwell Science Limited

which 728 transformants showed fluorescence localized to distinct intracellular structures such as the nucleus, the nuclear membrane, and cytoskeletal structures. Plasmids were isolated from 516 of these transformants, and a determination of their DNA sequences identified 250 independent genes. The intracellular localizations of the 250 GFP-fusion constructs was categorized as an image database; using this database, DNA sequences can be searched for based on the localizations of their products.

Conclusions: A number of new intracellular structural components were found in this library. The library of GFP-fusion constructs also provides useful fluorescent markers for various intracellular structures and cellular activities, which can be readily used for microscopic observation in living cells.

expressed from the nmt1 promoter. These selected DNA fragments were then screened for the intracellular localization of their products (Sawin & Nurse 1996); and more recently, a GFP-fusion human cDNA library was constructed, and a microscopic screening of the library identified a novel nuclear envelope protein (Rolls *et al.* 1999).

Here we report the construction of a green fluorescent protein (GFP)-fusion genomic DNA library of *S. pombe* in which the authentic promoters of the genes which are fused to GFP regulate the expression of the fusion constructs. This strategy allowed us to examine the intracellular localization of gene products expressed under physiologically relevant conditions. Based on our screening of this library, we selected 516 transformants with GFP staining in distinct intracellular structures, such as the nucleus, the nuclear membrane, spindle-pole body (SPB), microtubules, and other cytoskeletal/cytoplasmic structures. A determination of the DNA sequences of the plasmids isolated from these transformants identified 250 independent genes, which we categorized based on the intracellular localization of their GFP-fusion products. Using this image database, it is possible to search for gene products which compose intracellular structures of interest. One notable advantage of the use of GFP-fusion is that the cloned DNA is ready for use in living cells. Our library of GFP-fusion constructs also provides useful fluorescent markers for various intracellular structures and cellular activities.

## **Results**

## Microscopic screening of a GFP-fusion genomic DNA library

Our strategy for the construction and screening of the GFP-fusion genomic DNA library is shown in Fig. 1. Using a multicopy plasmid vector containing no foreign promoters, we constructed three plasmids with GFP gene inserts, each plasmid designed to accept a genomic DNA fragment at the 5' end of the GFP gene such that the GFP gene is in one of three reading frames in relation to the DNA fragment (see Experimental procedures); thus, only those recombinant plasmids in which the genomic DNA insert contains a gene together with its own promoter, and in which the gene is fused in-frame with the GFP gene are able to express a fluorescent protein.

S. pombe cells of a homothalic  $h^{90}$  strain, CRL126. were transformed with the GFP-fusion genomic DNA libraries, and transformed cells were grown individually on EMM2 plates (see Experimental procedures). Under these conditions, a relatively small proportion of the cell population enters meiosis, while the majority grow mitotically. Because the genes fused with GFP were expressed under their own promoters, it was possible to examine the intracellular localization of the gene products under physiologically relevant conditions in a mixture of mitotic and meiotic cells during screening. Meiotic prophase nuclei in the fission yeast can be easily distinguished by their characteristic elongated morphology, generally called 'horse-tail' nuclei (indicated by an asterisk in Fig. 2); the horse-tail nucleus shows an oscillatory movement between the cell poles during meiotic prophase (Chikashige et al. 1994; see Fig. 4B).

Of the 49845 transformants screened, 6954 transformants exhibited GFP fluorescence. Most of the fluorescent transformants gave a uniform GFP staining within the cell and were excluded from further screening (see the legend to Fig. 1), but 728 transformants showed (1) Construction of GFP-fusion DNA library



**Figure 1** Strategy for construction and screening of the GFPfusion genomic DNA library. The figure illustrates the processes of: (1) construction of the GFP-fusion library, (2) transformation of *S. pombe* cells with the library, (3) microscopic screening of the *S. pombe* transformants, (4) recovery of plasmids from the selected transformants, and (5) determination of nucleotide sequences of a DNA insert. During microscopic screening, we excluded those transformants which showed no fluorescence, uniform staining throughout the cytoplasm and the nucleus, and uniform staining in the cytoplasm with nuclear exclusion.

fluorescent staining in distinct intracellular structures (Table 1). Plasmids were recovered from 516 of these latter transformants and partial sequences of the inserted DNA were determined. The 516 cloned DNA sequences identified 250 independent genes. The sequenced plasmids were retransformed to a different  $h^{90}$  strain, CRL152, to confirm that the localization patterns were reproducible.

We categorized the 250 gene products into 11 groups based on their intracellular localizations (Table 1): nuclear components (subdivided into the general nuclear region, the nucleolus, nuclear dots and the nuclear rim), general membrane components, SPB components, microtubule components, cell wall components, septum and cell pole components, other cytoskeletal/cytoplasmic components, and spore wall components. We examined both mitotic and meiotic cells; only three of the 250 genes were found to be expressed specifically in meiotic cells. In one of these three transformants, TA27, the GFP signal can be detected in nuclei only from meiotic prophase to the first meiotic division, and the other two transformants, A799 and TB91, exhibited brightly stained spore rims (Table 2; image data not shown).

DNA sequences determined for these 250 constructs were compared with public databases of DNA sequences; the results are summarized in Table 2. The determined DNA sequences of the 250 gene fragments were submitted to the public database DDBJ with comments on intracellular localization of their products. Accession numbers are AB027768–AB028018 (Table 2; although DNA sequences of 251 gene fragments were submitted, AB027963 turned out to be identical to AB027870).

## Construction of the image database of intracellular localization

We constructed an image database of the intracellular localization of these gene products categorized into the 11 groups; using this database, DNA sequences can be searched based on the localization of their products. Occasionally, a GFP-fusion protein was observed in more than one intracellular localization. In these cases, we categorized the gene by the intracellular location which exhibited the most prominent staining. Secondary localizations are also listed in the database, and genes can be searched for by any of their detected locations.

#### (i) Nuclear components

The nuclear component category, containing 145 of the 250 genes cloned in this study, is subdivided into four groups (Table 1): 98 genes for general nuclear staining (Fig. 2A), 10 genes for nuclear dots (Fig. 2B), 22 genes for nucleolar staining (Fig. 2C), and 15 genes for nuclear rim staining (Fig. 2D). The search for a nuclear localization signal (NLS) in these constructs using the PSORT II program <a href="http://psort.ims.u-tokyo.ac.jp">http://psort.ims.u-tokyo.ac.jp</a> (Nakai & Horton 1999) found putative NLSs in 64 constructs (for details, see Table 3).

Examples of general nuclear staining are shown in Fig. 2A for A691, M730 and TC35. A691 is an unknown gene; TC35 is an unknown gene containing a myb domain; and M730 is a homologue of *S. cerevisiae* RNA helicase PRP43 (Table 2). General nuclear staining includes staining of the chromatin region (TC35 in Fig. 2A), as well as staining of the entire nuclear region. In some cases, as shown in A691 (Fig. 2A), variable cytoplasmic staining was also observed. Putative NLSs

|                                            | Frame 1 | Frame 2 | Frame 3   | Total       |
|--------------------------------------------|---------|---------|-----------|-------------|
| Total clones screened                      | 25 494  | 12084   | 12 267    | 49845       |
| Clones with GFP staining                   | 3295    | 1279    | 2380      | 6954        |
| Clones with discrete GFP staining patterns | 302     | 130     | 296       | 728         |
| Localization                               |         | Total   | Sequenced | Independent |
| pattern                                    |         | number  | clone     | gene        |
| Nucleus (general nuclear staining)         |         | 307     | 236       | 98          |
| Nuclear dots                               |         | 31      | 26        | 10          |
| Nucleolus                                  |         | 29      | 29        | 22          |
| Nuclear rim                                |         | 26      | 26        | 15          |
| Membrane (nuclear and plasma membrane, ER) |         | 180     | 115       | 57          |
| SPB                                        |         | 6       | 6         | 3           |
| Microtubule                                |         | 22      | 22        | 5           |
| Cell pole, septum                          |         | 10      | 12        | 8           |
| Cell periphery                             |         | 26      | 14        | 11          |
| Cytoplasmic structures                     |         | 85      | 25        | 19          |
| Spore rim                                  |         | 6       | 5         | 2           |
| Total                                      |         | 728     | 516       | 250         |

 Table 1
 Summary of GFP-fusion library



Figure 2 Nuclear components. (A) general nuclear staining, (B) nuclear dots, (C) nucleolus, and (D) nuclear rim. Asterisks indicate conjugated zygotes, in which fusing nuclei during karyogamy and elongated, 'horse-tail' nuclei in meiotic prophase can be seen. Scale bar represents 10 µm.



**Figure 3** Membrane, cytoskeletal and cytoplasmic components: (A) Membrane staining, (B) SPB, (C) microtubules, (D) cell pole and septum, (E) cell periphery, and (F) cytoplasmic dots. Asterisks indicate conjugated zygotes. Inset of TA69 in (B) shows two time-lapse images of the same cell; note that the GFP dot indicated by the arrow changes its position as the horse-tail nucleus moves. Left two panels of B507 in (E) shows two focal planes at the middle and apical sides of the same cell. Scale bar represents 10  $\mu$ m.

© Blackwell Science Limited

Genes to Cells (2000) 5, 169–190 173

were found in many of the gene products in this category (Table 3). A few instances were found in which normally non-nuclear proteins localized to the nucleus in this study, presumably due to C-terminal truncation of the protein and loss of the proper localization signal: D371, containing the N-terminal 142 residues of pap1 protein, exhibited bright nuclear staining, although pap1 protein is a transcription factor localized to the cytoplasm and imported into the nucleus in response to oxidative stress (Toda et al. 1991; Kudo et al. 1999). A putative bipartite NLS was found in D371 (Table 3) but the identified nuclear export signal located near the C-terminus (Kudo et al. 1999) was missing. Another example, TA76, contains the N-terminal 393 residues of ssp1 protein, and a putative bipartite NLS was found in this portion (Table 3). Since ssp1 protein is a protein kinase localized to the cytoplasm and required for actin localization and stress response (Matsusaka et al. 1995; Rupes et al. 1999), its cytoplasmic localization is likely to be regulated by unidentified sequences at the C-terminal truncated region.

Examples of nuclear dot staining are shown in Fig. 2B for H272, SB44 and TA73: in this category various numbers of distinct dots are observed inside the nucleus. One of them, H272, showed an interesting localization within the cell: in the mitotic interphase, it is typical for 3-4 dots locate to the periphery of nucleus, while in the meiotic prophase, one dot locates to the leading edge of the moving horse-tail nucleus and one or two other dots locate to the rear side of the horse-tail nucleus (Fig. 2B). In addition to the nuclear dots, H272 stains mitotic and meiotic spindle microtubules (indicated by an arrow in Fig. 2B), but not cytoplasmic microtubules. A sequence analysis shows that H272 contains the N-terminal 286 residues of the 601-residue ORF of the uncharacterized gene, SPAC17H9.06c. We also made a chromosomal integration of a GFP-SPAC17H9.06c fusion construct with the GFP gene fused to the 3'-end of the SPAC17H9.06c gene; this full-length fusion construct on the chromosome showed a localization pattern identical to that of H272 (data not shown). Another clone, TB04, exhibited a pattern of nuclear dots similar to that of H272, but TB04 staining was exclusively nuclear and did not stain microtubules (Table 2; image data not shown). TB04 contains the N-terminal 525 residues of the 736 residue gene SPCC830.03. The Cterminal fusion of GFP to the full-length SPCC830.03 on the chromosome reproduced a pattern of staining of TB04 (data not shown).

There are several ribosomal proteins found in nucleolus (Table 2; image data not shown). Examples of nucleolar staining are shown in Fig. 2C for TC37,

TA78 and Z031. One of them, TC37, is homologous to FK506- and rapamycin-binding protein (FKBP); two kinds of FKBP have been shown to localize to the nucleolus in *S. cerevisiae* (Benton *et al.* 1994; Shan *et al.* 1994).

Several clones with punctate staining on the nuclear rim staining were obtained in our library; examples are shown in Fig. 2D for SB21, TB70 and TC61. While little is known about the components of the nuclear membrane or the nuclear pore complex (NPC) in *S. pombe*, some punctate nuclear rim staining appears to represent NPC components; SB21 and TB70 for example are homologous to *S. cerevisiae* Nup 133 and Nup2, respectively, which are components of the NPC (Loeb *et al.* 1993; Doye *et al.* 1994). TC61 is similar to importin  $\beta$  N-terminal domain signatures and show punctate staining on the nuclear rim that is very similar to TC61 (Table 2; image data not shown).

#### (ii) Membrane components

This category of GFP-fusion constructs, containing 57 genes (Table 1), stains all membrane structures including the nuclear membrane, the plasma membrane, the putative ER membrane, and other putative vesicle membranes; gene products which localize specifically to the nuclear membrane are categorized into the nuclear rim staining subgroup of nuclear components described in the previous section (Table 2). Some of the proteins in this category turned out to be membrane transporters of proteins, peptides, amino acids, sugars, and cations (Table 2). Examples of general membrane staining are shown in Fig. 3A for D817, TA22, TA51 and Q769. The D817 construct contains the N-terminal 275 amino acid residues of P450 cytochrome reductase (Miles 1992), within which a single segment of potential transmembrane sequences (Klein et al. 1985) is contained. D817 predominantly stains the nuclear membrane and the plasma membrane (Fig. 3A), and is feasible for a marker of the nuclear membrane (Tange et al. 1998; also see Fig. 4). TA22 and TA51 also contains five and one potential transmembrane segments, respectively. Q769 contains no obvious integral transmembrane sequences but has 'peripheral' transmembrane sequences defined in PSORT II, and stains general membranes including putative cytoplasmic vesicular membranes.

One of the gene products in this category, TA61, has high similarity to *S. cerevisiae* POM152, an integral protein of the membrane domain of the NPC (Wozniak *et al.* 1994). The full-length POM152 contains a potential transmembrane segment at its N-terminus 
 Table 2 Intracellular localization categories of 250 GFP-fusion constructs

|                | Accession |              | GFP fusion |                                                                                       |                                |
|----------------|-----------|--------------|------------|---------------------------------------------------------------------------------------|--------------------------------|
| Clone*         | no.       | Gene/ORF     | position†  | Note                                                                                  | References‡                    |
|                |           |              |            |                                                                                       |                                |
| Nucleus        |           |              |            |                                                                                       |                                |
| A213           | AB027768  | SPAC18B11.10 | 101/614    | hypothetical Trp-Asp repeats<br>containing protein related to<br><i>S.pombe</i> tup1+ |                                |
| A691 (Fig. 2A) | AB027769  | SPBC1685.08  | 179/442    | * *                                                                                   |                                |
| B482           | AB027773  |              |            |                                                                                       |                                |
| B934           | AB027776  | ste11+       | 101/468    | transcription factor                                                                  | Sugimoto 1991;<br>Leupold 1991 |
| D371           | AB027778  | pap1+        | 142/544    | AP-1-like transcription factor                                                        | Toda 1991                      |
| E183           | AB027781  | SPBC16A3.19  | 227/272    | I I I I I I I I I I I I I I I I I I I                                                 |                                |
| E775           | AB027783  | SPBC215.03c  | 133/422    | putative signal transduction pathway                                                  |                                |
| E961           | AB027785  |              |            | component                                                                             |                                |
| F288           | AB027786  |              | 405/479    |                                                                                       |                                |
| F293           | AB027787  | SPAC24C9.05c | 535/730    |                                                                                       |                                |
| F964           | AB027789  | pyp2+        | 436/711    | protein-tyrosine phosphatase                                                          | Ottilie 1992;<br>Millar 1992   |
| F969           | AB027790  | SPAC2E11.05c | 106/727    |                                                                                       | Ivilliar 1772                  |
| G703           | AB027792  | SPBC19C7 10  | 381/445    |                                                                                       |                                |
| G737           | AB027793  | SPBC947 12   | 153/457    | similar to S pombe kms1+                                                              |                                |
| H644           | AB027796  | pol3+        | 454/1084   | DNA polymerase delta large chain                                                      | Pignede 1991                   |
| H782           | AB027798  | SPBP8B7.23   | 158/673    | zinc finger protein                                                                   | i ignede 1771                  |
| 1633           | AB027804  |              |            |                                                                                       |                                |
| 1972           | AB027807  | SPBC428.17c  | 111/602    | hypothetical serine rich protein                                                      |                                |
| K026           | AB027808  | SPBC530.05   | 70/743     | putative transcriptional activator                                                    |                                |
| L197           | AB027814  | SPBC29A3.13c | 188/359    | I man I man I man I man                                                               |                                |
| L391           | AB027815  | SPAC27F1.09c | 252/1205   | putative nuclear protein                                                              |                                |
| M171           | AB027818  | SPAC16A10.01 | 110/830    | 1 1                                                                                   |                                |
| M730 (Fig. 2A) | AB027819  | SPBC16H5.10c | 728/735    | putative pre-mRNA splicing factor<br>RNA helicase <i>S. cerevisiae</i> PRP43          |                                |
| SA03           | AB027839  |              |            |                                                                                       |                                |
| SA04           | AB027840  |              |            |                                                                                       |                                |
| SA08           | AB027842  |              |            |                                                                                       |                                |
| SA21           | AB027844  |              |            |                                                                                       |                                |
| SA29           | AB027847  | SPAC6F12.16  | 966/1117   | putative helicase                                                                     |                                |
| SA32           | AB027848  | SPAC630.09c  | 225/277    |                                                                                       |                                |
| SA50           | AB027850  | hba1+        | 359/399    | brefeldin A resistance protein                                                        | Turi 1996                      |
| SA54           | AB027851  | SPAC6F12.02  | 364/567    | zinc finger protein                                                                   |                                |
| SA68           | AB027852  | hrp1+        | 1015/1367  | SNF2/SWI2 helicase-related protein                                                    | Jin 1998                       |
| SB08           | AB027858  | SPAC637.12c  | 441/463    | putative histone acetyl transferase                                                   |                                |
| SB29           | AB027862  | rnp24+       | 196/347    | RNA-binding protein                                                                   | VanHoy 1996                    |
| TA02           | AB027866  |              |            |                                                                                       |                                |
| TA13 (Fig. 6)  | AB027869  | cdc13+       | 226/482    | G2/mitotic-specific cyclin                                                            | Hagan 1988;<br>Booher 1988     |
| TA14           | AB027870  |              |            |                                                                                       |                                |
| TA24           | AB027876  | rhp16+       | 716/854    | nucleotide excision repair protein                                                    | Bang 1996                      |
| TA27           | AB027879  | SPAC6B12.16  | 343/344    | * *                                                                                   | č                              |
| TA29           | AB027880  | SPCC550.02c  | 328/354    | RNA binding protein                                                                   |                                |
| TA35           | AB027882  | SPAC31A2.07c | 168/848    | putative ATP-dependent RNA<br>helicase                                                |                                |

© Blackwell Science Limited

Genes to Cells (2000) 5, 169–190 175

|               | Accession |                | GFP fusion |                                                                                          |                |
|---------------|-----------|----------------|------------|------------------------------------------------------------------------------------------|----------------|
| Clone*        | no.       | Gene/ORF       | position†  | Note                                                                                     | References‡    |
| TA36          | AB027883  | pla1+          | 436/566    | polyA polymerase                                                                         | Ohnacker 1996  |
| TA40          | AB027885  | SPCC645.13     | 199/721    |                                                                                          |                |
| TA45          | AB027889  | cdc10+         | 309/767    | 'start' control protein                                                                  | Aves 1985      |
| TA47          | AB027891  |                |            | *                                                                                        |                |
| TA49          | AB027893  | SPAC3A11.08    | 412/734    | cullin homolog                                                                           |                |
| TA54          | AB027897  | SPAC17G6.12    | 359/767    | putative cell division control<br>protein                                                |                |
| TA66          | AB027904  | SPAC57A7.06    | 333/929    | L                                                                                        |                |
| TA70          | AB027908  | SPAC2E12.01    | 398/447    |                                                                                          |                |
| TA75          | AB027912  | SPAC26A3.09c   | 301/1275   |                                                                                          |                |
| TA76          | AB027913  | ssp1+          | 393/652    | Ser/Thr protein kinase                                                                   | Matsusaka 1995 |
| TA86          | AB027919  | SPAC2C6.16     | 810/997    | contains ATP/GTP-binding site<br>motif A (P-loop)                                        |                |
| TA87          | AB027920  | SPAC23E2.02    | 404/1273   |                                                                                          |                |
| TA88          | AB027921  | SPAC5D6.02c    | 161/300    |                                                                                          |                |
| TA90          | AB027923  | SPBC15D4.09c   | 213/610    | putative cystathionine<br>gamma-synthase                                                 |                |
| TA96          | AB027926  |                |            | 0 ,                                                                                      |                |
| TA98          | AB027927  |                |            |                                                                                          |                |
| TA99          | AB027928  | SPBC14F5.08    | 374/376    | possible component of RNA<br>PolymeraseII transcriptional<br>regulation mediator complex |                |
| TB14          | AB027934  |                |            | regulation mediator complex                                                              |                |
| TB19 (Fig. 5) | AB027936  | pol1⊥          | 190/1405   | DNA polymerse alpha                                                                      | Domognez 1991  |
| TB20          | AB027937  | pont           | 170/1403   | Divit polymerase alpha                                                                   | Damagnez 1771  |
| TB23          | AB027939  | SPCC126 14     | 236/343    |                                                                                          |                |
| TB26          | AB027940  | SPBC 24E9 10   | 620/695    |                                                                                          |                |
| TB30          | AB027942  | SPBC 31E10 16  | 415/679    |                                                                                          |                |
| TB32          | AB027944  | SPBC 3B9 02c   | 321/381    |                                                                                          |                |
| TB40          | AB027947  | SPAC25A8.01c   | 215/922    | putative helicase                                                                        |                |
| TB46          | AB027948  | 5111025110.010 | 210/ /22   | putative henease                                                                         |                |
| TB57          | AB027952  | SPCC70.01      | 596/964    |                                                                                          |                |
| TB58          | AB027953  | 51 667 0.01    | 370/701    |                                                                                          |                |
| TB68          | AB027956  |                |            |                                                                                          |                |
| TB72          | AB027959  | cut3 +         | 486/1324   | chromosome segregation protein                                                           | Saka 1994      |
| TB73          | AB027960  | pi048          | 95/351     | similar to <i>S. pombe</i> alpha-1.2-<br>galactosyltransferase                           |                |
| TB76          | AB027961  | SPAC19G12.14   | 446/742    | probable phosphatidylinositol-4-<br>phosphate5-kinase                                    |                |
| TB85          | AB027964  |                |            | * *                                                                                      |                |
| TB93          | AB027969  | SPAC1D4.01     | 115/285    |                                                                                          |                |
| TC02          | AB027972  | cut15+         | 199/542    | putative importin alpha                                                                  | Matsusaka 1998 |
| TC10          | AB027975  |                |            |                                                                                          |                |
| TC13          | AB027977  |                |            |                                                                                          |                |
| TC18          | AB027980  |                |            |                                                                                          |                |
| TC19          | AB027981  |                |            |                                                                                          |                |
| TC22          | AB027983  | SPBC17D11.06   | 248/459    | similar to <i>S. cerevisiae</i> DNA primase large subunit                                |                |
| TC23          | AB027985  | prp2+          | 168/517    | Splicing factor U2AF 59 KD subunit                                                       | Potashkin 1993 |
| TC26          | AB027987  |                |            |                                                                                          |                |

**176** Genes to Cells (2000) **5**, 169–190

|                | Accession |               | GFP fusion |                                                     |                |
|----------------|-----------|---------------|------------|-----------------------------------------------------|----------------|
| Clone*         | no.       | Gene/ORF      | position†  | Note                                                | References‡    |
| TC31           | AB027988  | SPAC17A5.06   | 313/804    | putative DNA repair helicase                        |                |
| TC35 (Fig. 2A) | AB027990  | SPBC19G7.13   | 384/458    | putative DNA binding factor                         |                |
| TC40           | AB027992  | SPBC31F10.13c | 920/932    | putative histone transcription regulator            |                |
| TC41           | AB027993  | SPBC2F12.03c  | 288/891    | serine-rich protein                                 |                |
| TC48           | AB027997  | SPBC14C8.14c  | 795/959    | DNA polymerase V                                    |                |
| TC49           | AB027998  |               |            |                                                     |                |
| TC53           | AB028000  | SPAC1327.01c  |            | putative transcriptional regulator                  |                |
| TC62           | AB028003  | pi029         | 463/833    |                                                     |                |
| TC71           | AB028008  | SPAC17G8.03c  | 172/199    |                                                     |                |
| TC82           | AB028014  |               |            |                                                     |                |
| TC92           | AB028016  | SPBC3D6.11c   | 165/269    | transcription factor, putative zinc finger protein  |                |
| TC98           | AB028017  | SPAC23C4.19   | 351/990    | probable involvement in<br>transcription initiation |                |
| U648           | AB027829  | sad1+         | 156/514    | spindle pole body associated                        | Hagan 1995     |
| U706           | AB027830  | SPAC22E12.11c | 151/859    | I                                                   |                |
| V125           | AB027831  |               |            |                                                     |                |
| Nuclear dots   |           |               |            |                                                     |                |
| G140           | AB027791  | ufd2+         | 571/930    | putative ubiquitin fusion<br>degradation protein    |                |
| H272 (Fig. 2B) | AB027794  | SPAC17H9.06c  | 286/601    |                                                     |                |
| SB44 (Fig. 2B) | AB027864  |               |            |                                                     |                |
| TA41           | AB027886  |               |            |                                                     |                |
| TA60           | AB027900  | wee1+         | 625/877    | mitosis inhibitor protein kinase                    | Russell 1987   |
| TA71           | AB027909  | mcs4+         | 217/522    | mitotic catastrophe suppressor                      | Cottarel 1997  |
| TA73 (Fig. 2B) | AB027911  | SPBC23E6.09   | 836/1102   | probable involvement in transcription               |                |
| TB04           | AB027930  | SPCC830.03    | 525/736    | *                                                   |                |
| TB36           | AB027946  |               |            |                                                     |                |
| TB67           | AB027955  | SPCC330.04c   | 258/357    |                                                     |                |
| Nucleolus      |           |               |            |                                                     |                |
| L452           | AB027816  |               |            |                                                     |                |
| SA23           | AB027845  |               | 47/253     | 60s Ribosomal protein k5                            | Gatermann 1989 |
| SA89           | AB027855  | SPBC3D6.15    | 52/92      | 40s ribosomal protein s25                           |                |
| SB46           | AB027865  | SPAC2E12.02   | 222/609    | heat shock factor protein (HSF)                     | Gallo 1993     |
| TA09           | AB027868  | SPBC3B8.09    | 461/597    |                                                     |                |
| TA100          | AB027929  |               | 66/191     | probable 40s ribosomal protein s9                   |                |
| TA38           | AB027884  | SPAC926.08c   | 278/317    |                                                     |                |
| TA57           | AB027899  | SPAC29A4.10   | 537/556    |                                                     |                |
| TA78 (Fig. 2C) | AB027915  |               |            |                                                     |                |
| TA82           | AB027916  | SPAC4F10.07c  | 302/758    |                                                     |                |
| TA93           | AB027925  | SPAC13G7.03   | 224/278    |                                                     |                |
| TB05           | AB027931  | SPBC23E6.07c  | 645/934    | replication factor 3 like protein                   |                |
| TB27           | AB027941  | SPBC2D10.10c  | 293/305    | fibrillarin                                         | Girard 1993    |
| TB31           | AB027943  | SPAC8C9.14    | 413/539    | putative transcription factor                       |                |
| TB88           | AB027965  | SPAC19G10.02  | 443/830    | putative helicase                                   |                |
| TB95           | AB027970  | SPAC8A4.13c   | 339/594    |                                                     |                |
| TC16           | AB027979  | SPBC19F5.05c  | 116/607    |                                                     |                |

| Clone*           | Accession<br>no. | Gene/ORF      | GFP fusion<br>position† | Note                                                                                          | References±    |
|------------------|------------------|---------------|-------------------------|-----------------------------------------------------------------------------------------------|----------------|
|                  | 12022001         |               |                         |                                                                                               |                |
| TC37 (Fig. 2C)   | AB027991         | SPBC1347.02   | 145/361                 | FKBP-type peptidyl prolyl cis-trans<br>Isomerase                                              |                |
| TC42             | AB027994         | SPAC13G6.02c  | 72/252                  | 40s ribosomal protein RP10                                                                    |                |
| TC65             | AB028005         | SPAC6F6.03c   | 104/537                 | hypothetical GTP-binding protein<br>associated                                                |                |
| TC74             | AB028010         | SPBC887.03c   | 104/747                 |                                                                                               |                |
| Z031 (Fig. 2C)   | AB027836         | SPAC1B3.09c   | 372/528                 |                                                                                               |                |
| Nuclear rim      |                  |               |                         |                                                                                               |                |
| I226             | AB027801         | phz1+         | 26/515                  | PPZ protein phosphatase                                                                       | Balcells 1997  |
| 1596             | AB027803         | 1             |                         |                                                                                               |                |
| I440             | AB027826         |               | 53/257                  | ATP synthase A chain                                                                          | Massardo 1990  |
| K028             | AB027809         | SPAC19D5.02c  | 153/223                 | -,                                                                                            |                |
| SA02             | AB027838         | SPBC30B4.05   | 835/844                 |                                                                                               |                |
| SB02             | AB027856         | SPBC30B4.05   | 166/967                 | putative chromosomal segregation                                                              |                |
|                  |                  |               |                         | protein, has an importin beta<br>N-terminal domain motif, similar<br>to <i>H. sapiens</i> CAS |                |
| SB21 (Fig. 2D)   | AB027860         | SPAC1805.04   | 1055/1162               | putative nuclear envelope pore<br>protein; similar to <i>S. cerevisiae</i><br>NUP133          |                |
| TA26             | AB027878         | SPBC3H7.02    | 646/877                 | sulfate permease                                                                              |                |
| TA43             | AB027888         |               |                         | *                                                                                             |                |
| TB11             | AB027933         | SPBC1685.14c  | 609/803                 |                                                                                               |                |
| TB70 (Fig. 2D)   | AB027958         | SPCC18B5.07c  | 485/565                 | putative nucleoporin; similar to <i>S. cerevisiae</i> NUP2                                    |                |
| TC14             | AB027978         | SPAC22G7.02   | 727/990                 |                                                                                               |                |
| TC52             | AB027999         | SPCC1840.03   | 307/1095                | putative importin beta                                                                        |                |
| TC61 (Fig. 2D)   | AB028002         | SPBC14F5.03c  | 605/1067                | putative importin beta-4                                                                      |                |
| TC88             | AB028015         | SPAC23H4.01c  | 608/749                 | probable involvement in sterol<br>metabolism                                                  |                |
| Membrane         |                  |               |                         |                                                                                               |                |
| A762             | AB027770         | itr1+         | 280/575                 | mvo-inositol transporter                                                                      |                |
| B759             | AB027775         |               | 44/48                   | ATP synthase protein                                                                          |                |
| C378             | AB027777         | pho4+         | 71/463                  | thiamine-repressible acid                                                                     | Yang 1990      |
| D817 (Figs 3A,4) | AB027780         | SPBC365.17    | 275/678                 | NADPH-cytochrome P450<br>reductase                                                            | Miles 1992     |
| E626             | AB027782         | sec61+        | 178/479                 | protein transport protein Sec61<br>alpha subunit                                              | Broughton 1997 |
| F961             | AB027788         |               |                         |                                                                                               |                |
| H717             | AB027797         | SPAC2F3.08    | 165/553                 | putative sucrose carrier                                                                      |                |
| J759             | AB027805         |               |                         | L                                                                                             |                |
| 1794             | AB027806         | sxa1+         | 480/533                 | aspartic proteinase                                                                           | Imai 1992      |
| L505             | AB027817         | ·             |                         | 1 1                                                                                           |                |
| P592             | AB027820         | SPAC9E9.04    | 109/188                 |                                                                                               |                |
| Q009             | AB027821         |               |                         |                                                                                               |                |
| Q769 (Fig. 3A)   | AB027822         | SPAC25H1.07   | 445/885                 |                                                                                               |                |
| R934             | AB027823         | SPCC1919.03c  | 116/298                 |                                                                                               |                |
| SA05             | AB027841         | SPAC2C4.05    | 70/134                  | cornichon homolog                                                                             |                |
| SA18             | AB027843         | SPAC30D11.01c | 286/993                 | putative family 31 glucosidase                                                                |                |

**178** Genes to Cells (2000) **5**, 169–190

| Clone*         | Accession no. | Gene/ORF       | GFP fusion<br>position† | Note                                                                                          | References‡   |
|----------------|---------------|----------------|-------------------------|-----------------------------------------------------------------------------------------------|---------------|
| SA28           | AB027846      | SPBC1734.12c   | 311/547                 | putative involvement in cell wall<br>structure or biosynthesis                                |               |
| SA33           | AB027849      | SPAC24H6.13    | 782/871                 | 2                                                                                             |               |
| SA78           | AB027853      | SPAC2E11.07c   | 809/1211                | putative cation transporting ATPase                                                           |               |
| SA82           | AB027854      |                |                         |                                                                                               |               |
| SB04           | AB027857      |                |                         |                                                                                               |               |
| SB16           | AB027859      |                |                         |                                                                                               |               |
| SB25           | AB027861      | SPAC23D3.12    | 411/559                 | putative inorganic phosphate<br>transporter                                                   |               |
| SB40           | AB027863      |                |                         | transporter                                                                                   |               |
| TA20           | AB027874      |                |                         |                                                                                               |               |
| TA22 (Fig. 3A) | AB027875      | SPAC 24B11 12c | 855/1402                | Ca transporting ATPase                                                                        |               |
| TA31           | AB027875      | 5171C2+D11.12C | 033/1402                | Ca transporting ATT asc                                                                       |               |
| TA51 (Fig. 3A) | AB027895      | isp4+          | 143/767                 | sexual differentiation process protein                                                        | Sato 1994     |
| TA52           | AB027896      | SPAC23H4.07c   | 195/227                 | probable involvement in protein targeting                                                     |               |
| TA61           | AB027901      | SPBC29A10.07   | 547/1250                | putative nuclear envelope pore<br>membrane protein; similar to<br><i>S. cerevisiae</i> POM152 |               |
| TA67           | AB027905      |                |                         |                                                                                               |               |
| TA77           | AB027914      | SPBC20F10.07   | 729/764                 |                                                                                               |               |
| TA83           | AB027917      |                |                         |                                                                                               |               |
| TA84           | AB027918      |                |                         |                                                                                               |               |
| TA89           | AB027922      |                |                         |                                                                                               |               |
| TA92           | AB027924      |                |                         |                                                                                               |               |
| TB07           | AB027932      | SPAC17G8.11c   | 84/356                  |                                                                                               |               |
| TB18           | AB027935      | fnx1+          | 462/531                 | multidrug resistance protein                                                                  | Dimitrov 1998 |
| TB35           | AB027945      |                |                         | с I                                                                                           |               |
| TB53           | AB027949      | pho1+          | 285/453                 | acid phosphatase                                                                              | Elliott 1986  |
| TB54           | AB027905      | *              |                         |                                                                                               |               |
| TB56           | AB027951      | SPBC3E7.06c    | 238/577                 | major facilitator family transporter                                                          |               |
| TB60           | AB027954      |                |                         |                                                                                               |               |
| TB69           | AB027957      | SPBC24E9.08c   | 384/935                 |                                                                                               |               |
| TB80           | AB027962      |                |                         |                                                                                               |               |
| TB89           | AB027966      |                |                         |                                                                                               |               |
| TC07           | AB027973      |                |                         |                                                                                               |               |
| TC08           | AB027974      | SPAC26H5.07c   | 266/424                 | putative mannosyl transferase                                                                 |               |
| TC12           | AB027974      |                |                         | _ *                                                                                           |               |
| TC25           | AB027986      | SPBC16C6.09    | 105/778                 | dolichyl-phosphate-mannose–protein<br>o-mannosyl transferase                                  | 1             |
| TC46           | AB027996      | SPAC23C11.06c  | 159/535                 |                                                                                               |               |
| TC64           | AB028004      | SPAC6G10.09    | 531/808                 | probable mannosyl-oligosaccharide                                                             |               |
| TC73           | AB028009      | SPBC1773.11c   | 127/396                 | putative <i>S. cerevisiae</i> cell division cyc.<br>CDC50 homolog                             | le            |
| TC78           | AB028011      | SPBC1734.04    | 414/430                 | putative involvement in protein<br>glycosylation in the golgi                                 |               |
| U120           | AB027828      | SPAC14C4.09    | 39/402                  |                                                                                               |               |
| X496           | AB027834      | SPBC30B4.01c   | 35/344                  |                                                                                               |               |
| X571           | AB027835      | SPBC36.01c     | 343/580                 | putative membrane transporter                                                                 |               |

© Blackwell Science Limited

Genes to Cells (2000) 5, 169–190 179

| Clone*            | Accession no. | Gene/ORF     | GFP fusion<br>position† | Note                                                         | References‡                    |
|-------------------|---------------|--------------|-------------------------|--------------------------------------------------------------|--------------------------------|
| SPB               |               |              |                         |                                                              |                                |
| TA69 (Fig. 3B)    | AB027907      | SPAC19A8.02  | 726/1213                |                                                              |                                |
| TB98 (Fig. 3B)    | AB027971      |              |                         |                                                              |                                |
| TC80 (Fig. 3B)    | AB028012      |              | 281/1173                | coiled-coil protein, myosin-like                             |                                |
| Microtubule       |               |              |                         |                                                              |                                |
| A937 (Fig. 3C)    | AB027772      | SPBC25B2.07c | 293/501                 | serine proline rich protein                                  |                                |
| I450 (Fig. 3C)    | AB027802      |              |                         |                                                              |                                |
| K360              | AB027811      | SPAC1F3.06c  | 870/1957                |                                                              |                                |
| TA65 (Fig. 3C)    | AB027903      | SPBC1604.20c | 545/628                 | putative kinesin motor                                       |                                |
| TA68 (Fig. 3C)    | AB027906      | pkl1+        | 464/784                 | kinesin-like protein                                         | Pidoux 1996                    |
| Cell pole/Septum  | L             |              |                         |                                                              |                                |
| D510              | AB027779      | SPAC4F8.13c  | 531/1489                | ras GTPase-activating-like protein                           |                                |
| TA42              | AB027887      | SPAC29A4.11  | 969/969                 |                                                              |                                |
| TB90 (Fig. 3D)    | AB027967      | SPBC1734.17  | 925/926                 | putative chitin synthase                                     |                                |
| TC20 (Fig. 3D)    | AB027982      | pck1+        | 535/988                 | protein kinase C-like protein                                | Toda 1993                      |
| TC22N             | AB027984      |              |                         |                                                              |                                |
| TC58              | AB028001      | SPCC1919.10c | 1382/1516               | putative myosin heavy chain                                  |                                |
| TC67              | AB028006      | cdc12+       | 689/1841                | cell division control protein                                | Chang 1997                     |
| W209              | AB027832      | SPAC31A2.14  | 948/962                 | hypothetical Trp-Asp repeats containing protein              |                                |
| Cell periphery    |               |              |                         |                                                              |                                |
| B507 (Fig. 3E)    | AB027774      | SPAC1A6.07   | 297/636                 |                                                              |                                |
| S644              | AB027824      | pck2+        | 927/1016                | protein kinase C-like protein                                | Toda 1993                      |
| TA16              | AB027872      | SPAC27F1.01c | 281/1794                | similar to S. cereviciae PAN1                                |                                |
| TA17              | AB027873      | SPAC10D6.07c | 414/421                 |                                                              |                                |
| TA46              | AB027890      | SPBC3D5.14c  | 280/309                 |                                                              |                                |
| TA50              | AB027894      | SPAC13G7.04c | 442/756                 |                                                              |                                |
| TA56              | AB027898      | SPAC17G6.02c | 314/324                 | similar to S. cerevisiae RTM1                                |                                |
| ΤΔ63              | A B027002     | SPCC70.05c   | 545/781                 | Sor/Thr protein kinese                                       |                                |
| TC45 (Fig. 3F)    | AB027902      | SFCC70.050   | 343/781                 | Sel/ I'll protein kinase                                     |                                |
| TC69              | AB028007      |              | 295/415                 |                                                              |                                |
| TC81              | AB028013      | aap1+        | 557/594                 | amino acid permease                                          |                                |
| Cytoplasmic strue | ctures        | 1            |                         | 1                                                            |                                |
| E906              | AB027784      | SPAC12G12.03 | 569/576                 |                                                              |                                |
| H461              | AB027795      | SPBC1709.17  | 125/505                 | folypolyglutamate synthase                                   |                                |
| I040              | AB027799      | SPAC6F12.10c | 1121/1323               | hypothetical phosphoribosyl-<br>formylelycinamidine synthase |                                |
| I096              | AB027800      | pss1+        | 305/720                 | heat shock protein 70-like protein                           | Chung 1998                     |
| K294              | AB027810      | cdc15+       | 334/907                 | cell division control protein                                | Fankhauser 1995                |
| K705              | AB027812      | myp2+/myo3+  | 2077/2104               | the second myosin II/type II<br>myosin                       | Bezanilla 1997;<br>Motegi 1997 |
| K755              | AB027813      | dak1+        | 167/591                 | dihydroxyacetone kinase                                      | Kimura 1998                    |
| S866              | AB027825      | SPAC2C4.07c  | 659/927                 | ribonuclease II RNB family                                   |                                |
| TA08              | AB027867      |              |                         | protein, similar to S. pombe Dis3                            |                                |
| TA15              | AB027871      | sum3+        | 339/636                 | suppressor of uncontrolled mitoris                           | Forbes 1998                    |
| TA25 (Fig. 3F)    | AB027877      | SPBC1734 13  | 125/301                 | ATP synthase gamma chain                                     | 101003 1770                    |
| (9.01)            |               |              |                         | mitochondrial precursor                                      |                                |

**180** Genes to Cells (2000) **5**, 169–190

| Clone*         | Accession<br>no. | Gene/ORF      | GFP fusion<br>position† | Note                                                        | References‡ |
|----------------|------------------|---------------|-------------------------|-------------------------------------------------------------|-------------|
| TA48           | AB027892         | SPAC5H10.14   | 492/647                 |                                                             |             |
| TA72           | AB027910         | SPCC794.10    | 253/499                 | putative UTP–glucose-1-phosphate<br>uridylyltransferase     |             |
| TB22           | AB027938         |               |                         |                                                             |             |
| TC32           | AB027989         | SPCC14G10.01  | 182/236                 |                                                             |             |
| TC99           | AB028018         | SPAC13G7.13c  | 385/533                 |                                                             |             |
| U017 (Fig. 3F) | AB027827         | SPCC1795.10c  | 189/227                 |                                                             |             |
| X267           | AB027833         | SPAC23C11.18c | 630/780                 | DNA mismatch repair muts family                             |             |
| Z651           | AB027837         | ntp1+         | 358/735                 | neutral trehalase                                           | Soto 1998   |
| Spore rim      |                  |               |                         |                                                             |             |
| A799           | AB027771         | SPAC17A5.04c  | 49/512                  | probable metallopeptidase, has<br>TR-Box in promoter region |             |
| TB91           | AB027968         |               |                         | 1 1 1 1 1 1 9 1 1                                           |             |

\*Listed by clone names alphabetically and numerically in each localization category.

†Number of amino acid residues contained in the GFP-fusion construct/total number of amino acid residues in the full-length ORF. ‡References for *S. pombe* genes. Cited by the first author and publication year.

(residues 88–104) and a bipartite NLS at its C-terminus (residues 725–741; Table 3), and is expected to show a punctate nuclear membrane localization. On the other hand, TA61 comprises the N-terminal 547 residues, containing the transmembrane segment but lacking the NLS, appears to lose the specific localization to the NPC and localizes to general membranes.

#### (iii) Cytoskeletal and cytoplasmic components

The remaining gene products were localized to the SPB, microtubules, cell poles, septum and cell periphery (Tables 1 and 2). Three gene products, TA69, TB98 and TC80, none of which have been previously documented, were localized primarily to the SPB (Fig. 3B); note that the SPB is located at the leading edge of the moving, elongated nucleus in meiotic prophase. In addition to the SPB staining, TA69 stained the cell poles, septum and mitotic spindle, and the meiotic conjugation site. TB98 and TC80 also stained microtubule organizing centres other than the SPB, and additionally, they both stained the nuclear envelope. This may be a similar situation in which a wellcharacterized SPB component, sad1 protein, also localizes in the nuclear membrane when expressed on a multicopy plasmid (Hagan & Yanagida 1995). Five gene products were localized to microtubules (Table 2; Fig. 3C), including two kinesin-related proteins (TA65 and TA68). It should be noted that one of them, I450, also stained the nucleus; in fact, a putative NLS was

found in I450 (Table 3). Eight gene products localized to the cell pole and septum (Table 2; Fig. 3D), 11 gene products localized to the cell periphery (Table 2; Fig. 3E), 19 gene products localized to cytoplasmic structures (Table 2; Fig. 3F), and 2 gene products localized to the spore rim (Table 2; image data not shown).

#### Live observation of GFP-fusion constructs

Several GFP-fusion constructs can be used as fiduciary fluorescent markers for intracellular structures, to follow their behaviour in living cells. An example using D817 as a marker of the nuclear membrane is shown in Fig. 4. The images in Fig. 4 illustrate how D817 manifests the changes which occur in the nuclear membrane during mitosis (Fig. 4A) and meiosis (Fig. 4B).

Certain constructs can also be used to monitor cell cycle stages. A straightforward example is shown in Fig. 5 using TA13. This construct contains the N-terminal 226 amino acid residues of cyclin B (cdc13 gene product), including the destruction box (Booher & Beach 1988). Figure 5 shows the intensity of nuclear fluorescence in TA13, mirroring the characteristic changes associated with cyclin B expression observed during the mitotic and meiotic cell cycles. In the mitotic cell, nuclear fluorescence reached a maximum at metaphase and decreased at the onset of anaphase (Fig. 5A; note the rounded nucleus at hour 3.4 and the dividing nucleus in the next frame). In the meiotic cell, nuclear fluorescence reached a maximum

## Table 3 Putative NLS sequences

| NLS type             | Clone          | Putative NLS sequence                                        | Note           | Localization++ |
|----------------------|----------------|--------------------------------------------------------------|----------------|----------------|
| Bipartite type *     | D371           | <b>KK</b> IGRKNSDQWPSS <b>KRK</b>                            | pap1+          | А              |
|                      | E961           | <b>KK</b> KSFSSMLAQV <b>KKEK</b> A                           |                | А              |
|                      | F288           | <b>KR</b> RALARRNSLA <b>RRR</b> SN                           |                | А              |
|                      | G737           | <b>rk</b> svakpqkise <u>n<b>rikr</b></u> k                   | SPBC947.12     | А              |
|                      | H644           | <b>RR</b> NGSIHGEITDV <b>KRRR</b>                            | pol3+          | А              |
|                      | H782           | <b>RK</b> NQQLASSERKT <b>KNKK</b> R                          | SPBP8B7.23     | А              |
|                      | J972           | <b>KR</b> SPGQTVSKRLH <b>KK</b> Q <b>R</b>                   | SPBC428.17c    | А              |
|                      | K026           | <b>KR</b> IPRACDMCRK <b>RKIR</b> C                           | SPBC530.05     | А              |
|                      | L391           | K <b>KR</b> ELELNNTEISQ <b>K</b> P <b>KR</b>                 | SPAC27F1.09c   | А              |
|                      | L452           | <b>RR</b> VDGASNVTQ <b>DYKR</b> AK                           |                | С              |
|                      | SA02           | <b>KK</b> AQLITLFSKL <b>RRAK</b> N                           | SPAC14C4.05c   | D              |
|                      | SA04           | KRRTKTGCLTCRRRRI                                             |                | А              |
|                      | SA29           | <b>RK</b> LALLEEVKDL <b>KKK</b> LS                           | SPAC6F12.16    | А              |
|                      | SA68           | KKSVASDDEDAYDKRHR                                            | hrp1+          | А              |
|                      | TA24           | KKVDSLSMVRRTKLERR                                            | rhp1+          | A              |
|                      | TA29           | <b>KK</b> VEKR ELHSR PP <b>KRK</b> I                         | SPCC550.02C    | A              |
|                      | TA40           | KRRGSVGTTATHTKRSKN                                           | SPCC645 13     | A              |
|                      | TA76           | KRIOFWCEVKETKKIRKB                                           | $sen1\pm$      | A              |
|                      | TB05           | KKPKVSPTPTSPKPKPS                                            | SPBC 23E6 07c  | C              |
|                      | TB14           | <b>DK</b> CCDD SCVCSD <b>KDKD</b> A                          | 51 DC25E0.07C  | Δ              |
|                      | TB20           |                                                              |                | Α              |
|                      | TB23           |                                                              | SPCC126.14     | Α              |
|                      | 1 D25          |                                                              | 51 CC120.14    | 11             |
|                      | <b>TB26</b>    |                                                              | SDBC24E0 10    | Δ              |
|                      | TD20           |                                                              | 3FDC24E9.10    | Λ<br>Λ         |
|                      | 1 D40<br>TD59  | <b>KR</b> GKDFAMKKAF <b>KFKGK</b>                            |                | A              |
|                      | TD30<br>TC02** |                                                              | out15 I        | л<br>л         |
|                      | TC02***        |                                                              | cut15+         | A              |
|                      | TC18           |                                                              |                | A              |
|                      | TC41<br>TC49   |                                                              | SPBC2F12.05C   | A              |
|                      | 1C48<br>TC40   | RRQWAIDIMLSILRSKR                                            | p015+          | A              |
|                      | TC49           | RR1 Y 55155555PFKKK                                          | SDA C1227 01   | A              |
|                      | 1055           | <b>KKR</b> LPLACQSCR <b>KKKVK</b>                            | SPAC1527.01c   | A              |
|                      | Z031           | <u><b>kk</b></u> ftknhlknti <u>e<b>rrk</b>Q</u>              | SPAC1B3.09c    | C              |
| Bipartite type       |                |                                                              |                |                |
| SV40 T (5R/Ks) †     | SB29           | K <u><b>kk</b></u> eekrlkrlda <b>k</b> yg <b>rk</b><br>Kkrkk | rnp24+         | А              |
|                      | <b>TA7</b> 0   | R <u><b>rr</b></u> kkllpsqrgg <b>kkksk</b><br><b>rrrkk</b>   | SPAC2E12.01    | А              |
|                      | TA88           | <u>rk</u> peivkptlrk <u>rgrkp</u><br>rrkrrk                  | SPAC5D6.02c    | А              |
|                      | TB19           | <u>kk</u> gnrshttsna <u>krrsq</u><br>rkrkksk                 | pol1+          | А              |
| SV40 T (5D (Va) +    | 11272          | DVVDV VDVDV                                                  | SDAC17110.06 a | D              |
| 3 + 0 + 0 + (3K/K) + | 112/2<br>SA54  | DDDDD                                                        | SDAC(E12 02    | Δ              |
|                      | 5A34<br>SB09   | NNNN<br>VVDDD                                                | SDAC(27.12)    | Δ              |
|                      | 3D00<br>TC22   | DDDDD                                                        | SFAC03/.120    | Δ              |
|                      | 1023           | NKKK                                                         | prp2+          | Λ              |
| SV40 T (4R/Ks) §     | SB44           | RRKK                                                         |                | В              |
|                      | TA13           | PKKR, PASKKRR, PKKLKKD                                       | cdc13+         | А              |
|                      | TA66           | KRKK                                                         | SPAC57A7.06    | А              |
|                      | TA86           | KRKR                                                         | SPAC2C6.16     | А              |

| NLS type         | Clone       | Putative NLS sequence              | Note          | Localization†† |
|------------------|-------------|------------------------------------|---------------|----------------|
|                  | TA96        | RKRK                               |               | А              |
|                  | TB76        | RRRR                               | SPAC19G12.15  | А              |
|                  | TB93        | RRRK, KRRK                         | SPAC1D4.01    | А              |
|                  | TC26        | RKRK                               |               | А              |
|                  | TC62        | КККК                               | pi029         | А              |
|                  | U706        | RRRR                               | SPAC22E12.11c | А              |
| SV40 T (others)¶ | B482        | PKRWRSS, PPKKSRP                   |               | А              |
|                  | B934        | PKKR, RRRHKK                       | ste11+        | А              |
|                  | F293        | PVRKIRR                            | SPAC24C9.05c  | А              |
|                  | I450        | HRKR, PEFKHRK                      |               | Е              |
|                  | M171        | PEESRKR                            | SPAC16A10.01  | А              |
|                  | SA89        | PKKKWSK                            | SPBC3D6.15    | С              |
|                  | TA09        | PYKERRF                            | SPBC3B8.09    | С              |
|                  | TA45        | KRHR                               | cdc10+        | А              |
|                  | TA49        | PRKSRQR                            | SPAC3A11.08   | А              |
|                  | TA38        | KKPK, PKPKKNV                      | SPAC926.08c   | С              |
|                  | <b>TB88</b> | PLPKKKHSIK, KKKP                   | SPAC19G10.02  | С              |
|                  | TB72        | RPRK                               | cut3+         | А              |
|                  | TC16        | PKNKKKA                            | SPBC19F5.05c  | С              |
|                  | TC71        | KRPR, PVARIKK, PRARRAA,<br>Pakkvkk | SPAC17G8.03c  | А              |

Proteins are targeted to the nucleus by specific nuclear localization signals (NLSs) within the proteins' primary sequence. Among the known nuclear targeting sequences there are no strict consensus NLSs, but some general features have been found to be conserved (Dingwall & Laskey 1991; Garcia-Bustos *et al.* 1991; Hicks & Raikhel 1995). One type of NLS is a single cluster of basic amino acids such as that found in the large T antigen of SV40. Another type is the 'bipartite' NLS found in nucleoplasmin, two clusters of basic amino acids separated by a spacer region of any ten amino acids (Robbins *et al.* 1991). Here, we listed the putative NLS sequences (Nakai & Kanehisa 1992) found in the GFP fusion proteins which localized to the nucleus.

\*This group contains a bipartite type NLS: comprised of two basic amino acids followed by a spacer region of any ten amino acids and then a group of five amino acids of which at least three must be basic.

†This group contains both the bipartite type NLS seen in the first group and, additionally, a single cluster of five basic amino acids (R or K). ‡This group contains at least one cluster of five basic amino acids (R or K).

§This group contains at least one cluster of four basic amino acids (R or K).

¶This group contains at least one cluster of the 'pat4' or 'pat7' sequences defined in the PSORT II program

<http://psort.ims.u-tokyo.ac.jp>.

\*\*Cut15+ is the *S. pombe* homolog of *Xenopus* importin alpha. The amino acid sequence of cut15+ corresponding to the reported NLS sequence in importin alpha is RRQNYKGKGTFQADEL<u>**RR**</u>RRETQQIEIR<u>**KQKRE**</u>ENLNKRRNL and contains a typical bipartite NLS.

††Intracellular localization categorized in Table 2: A, nucleus; B, nuclear dots; C, nucleolus; D, nuclear rim; E, others.

at the first meiotic metaphase when the nucleus stops the horse-tail nuclear movements (Fig. 5B, frames 1 h 40min–2 h 20min) and disappeared at the onset of the first meiotic anaphase (Fig. 5B, 2h 30min); during the second meiotic division, its intensity increased toward the second meiotic metaphase (Fig. 5B, 2h 50min–3 h 20min) and disappeared at the onset of the second meiotic anaphase (Fig. 5B, 3h 30min).

A second example of observing a cell cycle-specific nuclear marker is shown in Fig. 6 using TB19. This construct contains the N-terminal 190 amino acid residues of DNA polymerase  $\alpha$ ; TB19 contains putative NLSs (Table 3), but lacks the catalytic domain of the enzyme (Damagnez *et al.* 1991). The intensity of nuclear fluorescence in TB19 also showed characteristic changes during the mitotic and meiotic cell cycles. In the mitotic cell, nuclear fluorescence reached a maximum just prior to cell separation, which corresponds to S phase, and declined thereafter (Fig. 6A). Thus, these two constructs TA13 and TB19 act as a cell cycle-specific nuclear marker for G2/M phase and S phase, respectively.



**Figure 4** Live observation of the nuclear membrane. (A) Mitotic nucleus, and (B) horse-tail nucleus observed in living cells of the D817 transformant. The horse-tail nucleus in (B) shows oscillatory movement between the cell poles. Numbers on the left represent time in minutes. Scale bar represents  $10 \,\mu$ m.

In the meiotic cell, TB19 nuclear fluorescence can be detected during karyogamy (Fig. 6B, 0 min–20 min), but is especially bright during the first half of the nuclear movements (Fig. 6B, 1 h 01 min–2 h 01 min) and gradually becomes dim toward the first meiotic division (Fig. 6B, 3 h 11 min–3 h 32 min); this behaviour reflects the fact that premeiotic DNA replication takes place at the beginning of the horse-tail period in *S. pombe* (Bähler *et al.* 1993). The nuclear fluorescence of TB19 exhibited an interesting characteristic during the second meiotic division, with fluorescence increasing again after the first meiotic nuclear division (Fig. 6B, 3h 37 min–3 h 52 min) and disappearing toward the second meiotic metaphase

(Fig. 6B, 4 h 02 min–4 h 37 min). The increase of the TB19 nuclear fluorescence during the second meiotic interphase implicates a pseudo S phase in meiotic nuclear cycles, in which DNA polymerase accumulates in the nucleus but no DNA replication is taking place.

## Discussion

We constructed a GFP-fusion genomic DNA library of the fission yeast S. pombe. The haploid genome of S. pombe consists of 13.8 Mbp of DNA (Fan et al. 1989), similar to that of the budding yeast S. cerevisiae (Goffeau et al. 1997). Efficient screening of the genomic DNA was possible in S. pombe because of its relatively small genome and the high density of coding regions. In S. cerevisiae, the total number of genes is about 6000 and the coding sequences of genes occupy 72% of the genome (Goffeau et al. 1997; Sherman 1997). Assuming a similar genomic organization in S. pombe, we estimate that our library comprises 50% of the ORFs in the genome if the DNA fragments were cloned randomly (see the Statistics section in Experimental procedures). However, the frequency of genes being cloned in replicate was higher than that expected by random cloning, DNA sequencing of 512 clones identified only 250 genes, indicating that the library is likely biased. It is likely that portion of the uncloned ORFs were excluded from the library for one of the following reasons: the introduced fusion construct was lethal to the transformed cell; a localization signal at the C-terminal region was truncated; the fusion of GFP to the gene product may disturb proper localization; genes with no appropriate cleavage site for the Sau3AI restriction enzyme were not cloned.

In our library, GFP-fusion constructs are expressed on a multicopy plasmid. An obvious limitation of our library is that those gene fragments which abate cell viability can not be obtained. In this context, it should be pointed out that our library is complementary to a GFP-fusion library of *S. pombe* that had been constructed previously (Sawin & Nurse 1996); this library selected for genes which disturbed mitotic growth when expressed, thus complementing our library in which such genes were excluded. Notably, none of the genes reported in Sawin & Nurse (1996) are included in our library.

Another limitation of our library is occasional mislocalization of the fusion gene products. Because we fused GFP to the 3'-end of the gene, in order that the expression of the fusion construct be under the control of the gene's authentic promoter, the C-terminal portion of the gene product was truncated to various extents and replaced by GFP. Gene products that have localization signals at their C-termini could



**Figure 5** Fluorescent nuclear marker for the G2/M phase. Nuclear fluorescence in mitotic cell cycle (A) and in meiosis (B) observed in living cells of the TA13 transformant. Numbers on the left represent time. Scale bar represents  $10 \,\mu$ m.

be mislocalized or excluded during screening. In addition, cryptic localization signals can occasionally be contained within the amino acid sequences fused to GFP.

Finally, it deserves comment that a spacer between GFP and the gene may affect the efficiency of localization of the GFP-fusion protein. We constructed our libraries using three plasmid vectors, each of which fuse the GFP gene in one of three reading frames to the genomic DNA insert (see Experimental procedures). The frame 3 plasmid elicited the best results, in that about 20% of the clones screened had a GFP signal, compared with the frame 1, about 13%, and frame 2, about 11%, plasmids (Table 1). The relative inefficiency of cells transformed with frame 1 and frame 2 plasmids in expressing GFP-fusion proteins may have come from the linker sequence between the GFP gene and the insertion. In frame 3 plasmid three amino acid residues Leu, Gly and Ser were inserted between GFP and the insertion, while in the frame 2 plasmid, three amino acid residues Trp, Gly and Ser were inserted, and in frame 1 plasmids there was no spacer codon between GFP and the insertion. Tethering the GFP directly to the protein backbone or with a spacer made of a heterocyclic aromatic amino acid, tryptophan, may affect the secondary structure of the fusion protein and, consequently, may disturb its intracellular localization.

## Conclusions

The GFP-fusion genomic DNA library in which the genes fused to GFP are expressed under their own promoters allowed us to examine the intracellular localization of gene products under physiological conditions both in mitotic



Figure 6 Fluorescent nuclear marker for the S phase. Nuclear fluorescence in mitotic cell cycle (A) and in meiosis (B) observed in living cells of the TB19 transformant. Numbers on the left represent time. Scale bar represents  $10 \,\mu$ m.

and meiotic cells. Microscopic screening of this library revealed a number of new components of various intracellular structures. This library provided the foundation for an extensive survey of the intracellular localization of *S. pombe* proteins. Once the *S. pombe* genome project is completed, the intracellular locations of about 50% of the gene products can be searched for using our DNA sequence and image database. The library of GFP-fusion constructs also provides useful fluorescent markers for various intracellular structures and cellular activities, which can be readily used for microscopic observation in living cells in mitosis and meiosis.

## **Experimental procedures**

#### Microscope system setup

A computer-controlled, fluorescence microscope system

employing a cooled, charge-coupled device (CCD) as an image detector was used to obtain fluorescence images. In our microscope system, a Peltier-cooled CCD camera CH250 (Photometrics Ltd, Tucson, Arizona) is attached to an Olympus inverted microscope IMT-2 or IX70; microscope lamp shutter, focus movement, filter combinations, and CCD data collection are controlled by a Silicon Graphics UNIX workstation (Hiraoka *et al.* 1991).

#### Strains and culture conditions

The S. pombe strain 968h<sup>90</sup> was used to prepare genomic DNA. Homothalic S. pombe strains CRL126 (h<sup>90</sup> leu1–32 ura4) and CRL152 (h<sup>90</sup> leu1–32 ura4 lys1) were used for transformation with the GFP-fusion genomic DNA library (see below). Complete medium YEade (YE containing 75  $\mu$ g/mL adenine sulphate) and minimum medium EMM2 were used for routine culture of S. pombe strains (Moreno *et al.* 1991). For observation of meiosis, homothalic h<sup>90</sup> strains cultured in EMM2 supplemented

with appropriate nutrients were washed in EMM2-N (EMM2 deprived of nitrogen sources) and then incubated in EMM2-N at 26 °C.

#### Construction of the library

Figure 1 summarizes our strategy for the construction and screening of a gene library in which S. pombe genomic DNA fragments from the wild-type strain were fused to the 5'-end of the GFP-S65T gene. Parent library plasmids were constructed based on pREP1 (Maundrell 1993). First, the nmt1 promoter region in pREP1 was deleted using the PstI and NdeI sites at the ends of the nmt1 promoter, and the resultant nmt1 promoter deleted pREP1 was then digested with BamHI and SmaI. The coding sequence of GFP-S65T (Heim & Tsien 1996) was amplified by PCR using GFP-S65T cloned in pRSET-B (a gift of Dr Tsien) as a template, CGCGGATCCCATGAGTAAAGG AGAAGAACTT as the 5' primer and GAAGGCCTATTTGTA TAGTTCATCCATGCC as the 3' primer. The PCR products were digested with BamHI and StuI and inserted into the BamHI/SmaI digested and nmt1 promoter deleted pREP1 plasmid. The resultant plasmid, pEG3-1, was used as the first frame library plasmid. The second frame plasmid, pEG3-2, was constructed by inserting a 12 base (CCCAGATCTGGG) BglII linker into pEG3-1 that had been digested with BamHI and blunt ended. The third frame plasmid, pEG3-3, was constructed by inserting a 10 base (CCAGATCTGG) BglII linker into the blunt ended, BamHI digested pEG3-1. The plasmids pEG3-1, pEG3-2, and pEG3-3 contain the S. pombe ars1 and the S. cerevisiae LEU2 gene as the selection marker.

Genomic DNA from 968h<sup>90</sup> was isolated in two ways. For the first frame library, we isolated genomic DNA according to Moreno et al. (1991). For the second and third frame libraries, we isolated genomic DNA according to Matsumoto et al. (1987), which includes two centrifugation steps during the isolation of nuclei to reduce mitochondrial contamination: the contamination from the mitochondria genome decreased from 20% in the first frame library to 7% in the second and third frame libraries. The isolated genomic DNA was partially digested with Sau3AI, and DNA fragments of 3-6 kbp were concentrated by sucrose gradient centrifugation. The DNA fragments were ligated into BamHI digested pEG3-1 and BglII digested pEG3-2 and pEG3-3 plasmids and transformed into E. coli DH5a. For the frame 1 library, about  $22\,000$  independent DH5 $\alpha$  clones were pooled to prepare library DNA. For frame 2 and 3 libraries, about 15 000 and  $14\,000$  independent DH5 $\alpha$  clones, respectively, were pooled to prepare library DNA. Examination of randomly selected E. coli clones indicated that 84% of frame 1, 78% of frame 2, and 75% of frame 3 clones contained insertions, and that the average length of the insertions was about 4.8 kbp.

#### Screening of the library

Library DNA was transformed into *S. pombe* cells of a homothalic  $h^{90}$  strain, CRL126, using a lithium chloride procedure (Moreno *et al.* 1991). Transformed cells were cultured on plates with

minimum medium EMM2 supplemented with 75  $\mu$ g/mL of adenine, uracil, histidine, and lysine. Single colonies were picked with toothpicks and patched on to new plates. The cells were grown on plates for 24 h at 33 °C and then for 12 h at 26 °C before screening with a fluorescence microscope—the low temperature step appears to enhance both GFP fluorescence and entry to meiosis.

For microscopic screening, cells of independent transformations were suspended in EMM2-N in 10-well immunofluorescence slides (Polysciences), and observed on our CCD microscope system using an Olympus oil immersion objective lens (SPlan Apo 60/NA = 1.4) and high-selectivity excitation and barrier filters for fluorescein (Chroma Technology, Brattleboro, Vermont).

The plasmids in those transformants exhibiting distinct staining patterns of GFP fluorescence were recovered and partial sequences of the DNA inserted at the GFP gene junction point were determined using the DNA sequencer ABI377 (Perkin-Elmer). Transmembrane sequences and NLSs were searched for using the PSORT II program <a href="http://psort.ims.u-tokyo.ac.jp">http://psort.ims.u-tokyo.ac.jp</a> (Nakai & Horton 1999).

#### Statistical evaluation of the library

The fraction of the genomic ORFs screened in the library, f, is obtained as  $f=1 - (1 - p/6)^N$ , where p is the proportion of the genome occupied by the average ORF, and N is the number of clones screened. Divided by a factor of 3 for the right reading frame and by a factor of 2 for the right direction, p/6 gives the probability for a given ORF being fused in-frame to the GFP gene in the right direction.

Although we screened 49 845 *S. pombe* transformants, not all of them contained an insert of genomic DNA. We estimated the number of effective genomic clones as follows: for the frame 1 library, 84% of the *E. coli* clones contained a DNA insert, and 80% of these contained genomic DNA therefore 17 132 of 25 494 *S. pombe* clones (25 494×0.84×0.8) are expected to contain a genomic DNA fragment. Likewise, for the second and third frame libraries, 8766 of 12 084 *S. pombe* clones (12 084×0.78×0.93) and 8556 of 12 267 *S. pombe* clones (12 267×0.75×0.93) are expected to contain a genomic DNA fragment. Summing up the three libraries, we estimate the number of clones containing a genomic DNA insert, N, to be 34 454 out of the 49 845 total clones screened.

In *S. cerevisiae*, the total number of genes is about 6000 and the coding sequences of genes occupy 72% of the genome (Goffeau *et al.* 1997; Sherman 1997). Assuming a similar genomic organization in *S. pombe*, the proportion of the average ORF in the genome p = 0.72/6000. Using these p and N-values in the above equation, we obtain f = 0.50.

#### Time-lapse observation in living cells

Time-lapse images of GFP fluorescence in living cells were obtained on the cooled CCD using the computer-controlled fluorescence microscope system (Haraguchi *et al.* 1997). The cells were mounted in a 35-mm glass-bottom culture dish (MatTek

Corp., Ashland, MA) coated with concanavalin A (1 mg/mL) and observed in EMM2 with amino acid supplements at  $26 \,^{\circ}$ C using an Olympus oil immersion objective lens (PlanApo 60/NA = 1.4) as previously described (Ding *et al.* 1998).

## Acknowledgements

We would like to thank all members of the laboratory, especially Takako Koujin, Rumi Kurokawa and Chihiro Tsutsumi, for their help in construction and screening of the library; and Dr David Alexander for critical reading of the manuscript. This work was supported by grants from Human Frontier Science Program (RG-428/95) and Japan Science and Technology Corporation (Cooperative System for Supporting Priority Research, and CREST) to Y. Hiraoka. Y. Hiraoka is a Principal Investigator of a CREST research project.

## References

- Aves, S.J., Durkacz, B.W., Carr, A. & Nurse, P. (1985) Cloning, sequencing and transcriptional control of the Schizosaccharomyces pombe cdc10 'start' gene. EMBO J. 4, 457–463.
- Bähler, J., Wyler, T., Loidl, J. & Kohli, J. (1993) Unusual nuclear structures in meiotic prophase of fission yeast: a cytological analysis. J. Cell Biol. 121, 241–256.
- Balcells, L., Gomez, N., Casamayor, A., Clotet, J. & Arino, J. (1997) Regulation of salt tolerance in fission yeast by a proteinphosphatase- Z-like Ser/Thr protein phosphatase. *Eur. J. Biochem.* 250, 476–483.
- Bang, D.D., Ketting, R., de Ruijter, M., et al. (1996) Cloning of Schizosaccharomyces pombe rph16+, a gene homologous to the Saccharomyces cerevisiae RAD16 gene. *Mutat. Res.* 364, 57–71.
- Benton, B.M., Zang, J.H. & Thorner, J. (1994) A novel FK506and rapamycin-binding protein (FPR3 gene product) in the yeast Saccharomyces cerevisiae is a proline rotamase localized to the nucleolus. J. Cell Biol. 127, 623–639.
- Bezanilla, M., Forsburg, S.L. & Pollard, T.D. (1997) Identification of a second myosin-II in Schizosaccharomyces pombe. *Mol. Biol. Cell* 8, 2693–2705.
- Booher, R. & Beach, D. (1988) Involvement of cdc13+ in mitotic control in Schizosaccharomyces pombe: possible interaction of the gene product with microtubules. *EMBO J.* 7, 2321–2327.
- Broughton, J., Swennen, D., Wilkinson, B.M., et al. (1997) Cloning of SEC61 homologues from Schizosaccharomyces pombe and Yarrowia lipolytica reveals the extent of functional conservation within this core component of the ER translocation machinery. J. Cell Sci. 110, 2715–2727.
- Burns, N., Grimwade, B., Ross-Macdonald, P.B., et al. (1994) Large-scale analysis of gene expression, protein localization, and gene disruption in Saccharomyces cerevisiae. *Genes Dev.* 8, 1087–1105.
- Chang, F., Drubin, D. & Nurse, P. (1997) cdc12p, a protein required for cytokinesis in fission yeast, is a component of the cell division ring and interacts with profilin. *J. Cell Biol.* **137**, 169–182.
- Chikashige, Y., Ding, D.-Q., Funabiki, H., et al. (1994) Telomere-led premeiotic chromosome movement in fission yeast. *Science* **264**, 270–273.

- Chung, K.S., Hoe, K.L., Kim, K.W. & Yoo, H.S. (1998) Isolation of a novel heat shock protein 70-like gene, pss1+ of Schizosaccharomyces pombe homologous to hsp110/SSE subfamily. *Gene* **210**, 143–150.
- Cottarel, G. (1997) Mcs4, a two-component system response regulator homologue, regulates the Schizosaccharomyces pombe cell cycle control. *Genetics* **147**, 1043–1051.
- Damagnez, V., Tillit, J., de Recondo, A.M. & Baldacci, G. (1991) The POL1 gene from the fission yeast, Schizosaccharomyces pombe, shows conserved amino acid blocks specific for eukaryotic DNA polymerases alpha. *Mol. Gen. Genet.* 226, 182–189.
- Dimitrov, K. & Sazer, S. (1998) The role of fnx1, a fission yeast multidrug resistance protein, in the transition of cells to a quiescent G0 state. *Mol. Cell Biol.* **18**, 5239–5246.
- Ding, D.Q., Chikashige, Y., Haraguchi, T. & Hiraoka, Y. (1998) Oscillatory nuclear movement in fission yeast meiotic prophase is driven by astral microtubules, as revealed by continuous observation of chromosomes and microtubules in living cells. J. Cell Sci. 111, 701–712.
- Dingwall, C. & Laskey, R.A. (1991) Nuclear targeting sequences—a consensus? *Trends Biochem. Sci.* 16, 478–481.
- Doye, V., Wepf, R. & Hurt, E.C. (1994) A novel nuclear pore protein Nup133p with distinct roles in poly(A) + RNA transport and nuclear pore distribution. *EMBO J.* **13**, 6062–6075.
- Elliott, S., Chang, C.W., Schweingruber, M.E., *et al.* (1986) Isolation and characterization of the structural gene for secreted acid phosphatase from Schizosaccharomyces pombe. *J. Biol. Chem.* **261**, 2936–2941.
- Fan, J.B., Chikashige, Y., Smith, C.L., Niwa, O., Yanagida, M. & Cantor, C.R. (1989) Construction of a Not I restriction map of the fission yeast Schizosaccharomyces pombe genome. *Nucl. Acids Res.* 17, 2801–2818.
- Fankhauser, C., Reymond, A., Cerutti, L., et al. (1995) The S. pombe cdc15 gene is a key element in the reorganization of Factin at mitosis. Cell 82, 435–444.
- Forbes, K.C., Humphrey, T. & Enoch, T. (1998) Suppressors of cdc25p overexpression identify two pathways that influence the G2/M checkpoint in fission yeast. *Genetics* 150, 1361–1375.
- Gallo, G.J., Prentice, H. & Kingston, R.E. (1993) Heat shock factor is required for growth at normal temperatures in the fission yeast Schizosaccharomyces pombe. *Mol. Cell Biol.* **13**, 749–761.
- Garcia-Bustos, J., Heitman, J. & Hall, M.N. (1991) Nuclear protein localization. *Biochim. Biophys. Acta* **1071**, 83–101.
- Gatermann, K.B., Teletski, C., Gross, T. & Kaufer, N.F. (1989) A ribosomal protein gene family from Schizosaccharomyces pombe consisting of three active members. *Curr. Genet.* 16, 361–367.
- Girard, J.P., Feliu, J., Caizergues-Ferrer, M. & Lapeyre, B. (1993) Study of multiple fibrillarin mRNAs reveals that 3' end formation in Schizosaccharomyces pombe is sensitive to cold shock. *Nucl. Acids Res.* **21**, 1881–1887.
- Goffeau, A., Aert, R., Agostini-Carbone, M.L., et al. (1997) The yeast genome directory. *Nature* **387** (Suppl.), 1–105.
- Hagan, I., Hayles, J. & Nurse, P. (1988) Cloning and sequencing of the cyclin-related cdc13+ gene and a cytological study of its role in fission yeast mitosis. *J. Cell Sci.* **91**, 587–595.
- Hagan, I. & Yanagida, M. (1995) The product of the spindle formation gene sad1+ associates with the fission yeast spindle

**188** Genes to Cells (2000) **5**, 169–190

pole body and is essential for viability. J. Cell Biol. 129, 1033-1047.

- Haraguchi, T., Kaneda, T. & Hiraoka, Y. (1997) Dynamics of chromosomes and microtubules visualized by multiplewavelength fluorescence imaging in living mammalian cells: effects of mitotic inhibitors on cell cycle progression. *Genes Cells* 2, 369–380.
- Heim, R. & Tsien, R.Y. (1996) Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. *Curr. Biol.* **6**, 178–182.
- Hicks, G.R. & Raikhel, N.V. (1995) Protein import into the nucleus: an integrated view. Annu. Rev. Cell Dev. Biol. 11, 155–188.
- Hiraoka, Y., Swedlow, J.R., Paddy, M.R., Agard, D.A. & Sedat, J.W. (1991) Three-dimensional multiple-wavelength fluorescence microscopy for the structural analysis of biological phenomena. *Sem. Cell Biol.* 2, 153–165.
- Imai, Y. & Yamamoto, M. (1992) Schizosaccharomyces pombe sxa1+ and sxa2+ encode putative proteases involved in the mating response. *Mol. Cell. Biol.* **12**, 1827–1834.
- Jin, Y.H., Yoo, E.J., Jang, Y.K., et al. (1998) Isolation and characterization of hrp1+, a new member of the SNF2/SWI2 gene family from the fission yeast Schizosaccharomyces pombe. *Mol. Gen. Genet.* 257, 319–329.
- Kimura, T., Takahashi, M., Yoshihara, K., et al. (1998) Cloning and characterization of two genes encoding dihydroxyacetone kinase from Schizosaccharomyces pombe IFO 0354. *Biochim. Biophys. Acta* 1442, 361–368.
- Klein, P., Kanehisa, M. & DeLisi, C. (1985) The detection and classification of membrane-spanning proteins. *Biochim. Bio*phys. Acta 815, 468–476.
- Kudo, N., Taoka, H., Toda, T., Yoshida, M. & Horinouchi, S. (1999) A novel nuclear export signal sensitive to oxidative stress in the fission yeast transcription factor Pap1. J. Biol. Chem. 274, 15151–15158.
- Leupold, U., Sipiczki, M. & Egel, R. (1991) Pheromone production and response in sterile mutants of fission yeast. *Curr. Genet.* 20, 79–85.
- Loeb, J.D., Davis, L.I. & Fink, G.R. (1993) NUP2, a novel yeast nucleoporin, has functional overlap with other proteins of the nuclear pore complex. *Mol. Biol. Cell* 4, 209–222.
- Massardo, D.R. (1990) Nucleotide sequence of the genes encoding tRNA (his), tRNA (pro) and tRNA (gln) in the mitochondrial genome of Schizosaccharomyces pombe strain EF1. *Nucl. Acids Res.* **18**, 6429.
- Matsumoto, T., Fukui, K., Niwa, O., et al. (1987) Identification of healed terminal DNA fragments in linear minichromosomes of Schizosaccharomyces pombe. Mol. Cell. Biol. 7, 4424–4430.
- Matsusaka, T., Hirata, D., Yanagida, M. & Toda, T. (1995) A novel protein kinase gene ssp1+ is required for alteration of growth polarity and actin localization in fission yeast. *EMBO J.* 14, 3325–3338.
- Matsusaka, T., Imamoto, N., Yoneda, Y. & Yanagida, M. (1998) Mutations in fission yeast Cut15, an importin alpha homolog, lead to mitotic progression without chromosome condensation. *Curr. Biol.* 8, 1031–1034.
- Maundrell, K. (1993) Thiamine-repressible expression vectors pREP and pRIP for fission yeast. *Gene* **123**, 127–130.
- Miles, J.S. (1992) Structurally and functionally conserved regions of cytochrome P-450 reductase as targets for DNA amplification by the polymerase chain reaction. Cloning and nucleotide

sequence of the Schizosaccharomyces pombe cDNA. *Biochem. J.* **287**, 195–200.

- Millar, J.B., Russell, P., Dixon, J.E. & Guan, K.L. (1992) Negative regulation of mitosis by two functionally overlapping PTPases in fission yeast. *EMBO J.* **11**, 4943–4952.
- Moreno, S., Klar, A. & Nurse, P. (1991) Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. *Meth. Enzymol.* **194**, 795–823.
- Motegi, F., Nakano, K., Kitayama, C., Yamamoto, M. & Mabuchi, I. (1997) Identification of Myo3, a second type-II myosin heavy chain in the fission yeast Schizosaccharomyces pombe. *FEBS Lett.* **420**, 161–166.
- Nakai, K. & Horton, P. (1999) PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. *Tiends Biochem. Sci.* 24, 34–36.
- Nakai, K. & Kanehisa, M. (1992) A knowledge base for predicting protein localization sites in eukaryotic cells. *Genomics* 14, 897–911.
- Ohnacker, M., Minvielle-Sebastia, L. & Keller, W. (1996) The Schizosaccharomyces pombe pla1 gene encodes a poly(A) polymerase and can functionally replace its Saccharomyces cerevisiae homologue. *Nucl. Acids Res.* **24**, 2585–2591.
- Ottilie, S., Chernoff, J., Hannig, G., Hoffman, C.S. & Erikson, R.L. (1992) The fission yeast genes pyp1+ and pyp2+ encode protein tyrosine phosphatases that negatively regulate mitosis. *Mol. Cell. Biol.* **12**, 5571–5580.
- Pidoux, A.L., LeDizet, M. & Cande, W.Z. (1996) Fission yeast pkl1 is a kinesin-related protein involved in mitotic spindle function. *Mol. Biol. Cell* 7, 1639–1655.
- Pignede, G., Bouvier, D., de Recondo, A.M. & Baldacci, G. (1991) Characterization of the POL3 gene product from Schizosaccharomyces pombe indicates inter-species conservation of the catalytic subunit of DNA polymerase delta. J. Mol. Biol. 222, 209–218.
- Potashkin, J., Naik, K. & Wentz-Hunter, K. (1993) U2AF homolog required for splicing in vivo. Science 262, 573–575.
- Robbins, J., Dilworth, S.M., Laskey, R.A. & Dingwall, C. (1991) Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. *Cell* 64, 615–623.
- Rolls, M.M., Stein, P.A., Taylor, S.S., *et al.* (1999) A visual screen of a GFP-fusion library identifies a new type of nuclear envelope membrane protein. *J. Cell Biol.* **146**, 29–44.
- Rupes, I., Jia, Z. & Young, P.G. (1999) Ssp1 promotes actin depolymerization and is involved in stress response and new end take-Off control in fission yeast. *Mol. Biol. Cell* 10, 1495–1510.
- Russell, P. & Nurse, P. (1987) Negative regulation of mitosis by wee1+, a gene encoding a protein kinase homolog. *Cell* 49, 559–567.
- Saka, Y., Sutani, T., Yamashita, Y., et al. (1994) Fission yeast cut3 and cut14, members of a ubiquitous protein family, are required for chromosome condensation and segregation in mitosis. EMBO J. 13, 4938–4952.
- Sato, S., Suzuki, H., Widyastuti, U., Hotta, Y. & Tabata, S. (1994) Identification and characterization of genes induced during sexual differentiation in Schizosaccharomyces pombe. *Curr. Genet.* 26, 31–37.
- Sawin, K.E. & Nurse, P. (1996) Identification of fission yeast nuclear markers using random polypeptide fusions with green fluorescent protein. *Proc. Natl. Acad. Sci. USA* 93, 15146–15151.

Shan, X., Xue, Z. & Melese, T. (1994) Yeast NPI46 encodes a

© Blackwell Science Limited

Genes to Cells (2000) 5, 169–190 189

novel prolyl cis-trans isomerase that is located in the nucleolus. *J. Cell Biol.* **126**, 853–862.

- Sherman, F. (1997) Yeast genetics. In: The Encyclopedia of Molecular Biology and Molecular Medicine (ed. R.A. Meyers), pp. 302–325. Germany: VCH.
- Soto, T., Fernandez, J., Dominguez, A., et al. (1998) Analysis of the ntp1+ gene, encoding neutral trehalase in the fission yeast Schizosaccharomyces pombe. Biochim. Biophys. Acta 1443, 225–229.
- Sugimoto, A., Iino, Y., Maeda, T., Watanabe, Y. & Yamamoto, M. (1991) Schizosaccharomyces pombe ste11+ encodes a transcription factor with an HMG motif that is a critical regulator of sexual development. *Genes Dev.* 5, 1990–1999.
- Tange, Y., Horio, T., Shimanuki, M., et al. (1998) A novel fission yeast gene, tht1+, is required for the fusion of nuclear envelopes during karyogamy. J. Cell Biol. 140, 247–258.
- Toda, T., Shimanuki, M. & Yanagida, M. (1991) Fission yeast genes that confer resistance to staurosporine encode an AP-1like transcription factor and a protein kinase related to the mammalian ERK1/MAP2 and budding yeast FUS3 and KSS1 kinases. *Genes Dev.* **5**, 60–73.

- Toda, T., Shimanuki, M. & Yanagida, M. (1993) Two novel protein kinase C-related genes of fission yeast are essential for cell viability and implicated in cell shape control. *EMBO J.* 12, 1987–1995.
- Turi, T.G., Mueller, U.W., Sazer, S. & Rose, J.K. (1996) Characterization of a nuclear protein conferring brefeldin A resistance in Schizosaccharomyces pombe. *J. Biol. Chem.* 271, 9166–9171.
- VanHoy, R.W. & Wise, J.A. (1996) Molecular analysis of a novel Schizosaccharomyces pombe gene containing two RNP consensus-sequence RNA-binding domains. *Curr. Genet.* 29, 307–315.
- Wozniak, R.W., Blobel, G. & Rout, M.P. (1994) POM152 is an integral protein of the pore membrane domain of the yeast nuclear envelope. J. Cell Biol. 125, 31–42.
- Yang, J.W. & Schweingruber, M.E. (1990) The structural gene coding for thiamin-repressible acid phosphatase in Schizosaccharomyces pombe. *Curr. Genet.* 18, 269–272.

Received: 7 November 1999 Accepted: 11 November 1999