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Abstract—This paper proposes a leader-follower based target
detection model for mobile molecular communication networks.
The proposed model divides application functionalities of molec-
ular communication networks over the two types of mobile bio-
nanomachine: leader and follower bio-nanomachines. Leader bio-
nanomachines distribute in the environment to detect a target
and create an attractant gradient around the target. Follower
bio-nanomachines move based on the attractant gradient made
by leader bio-nanomachines, approach the target and perform
necessary functionalities such as releasing drug molecules. The
functional division demonstrated through the model facilitates the
design and development of molecular communication networks
as it can reduce the number of functionalities that need to be
implemented on individual bio-nanomachines.

Index Terms—Molecular communication, mobile bio-
nanomachine, leader-follower model, target detection

I. INTRODUCTION

Molecular communication networks or collections of bio-
nanomachines that communicate through molecular communi-
cation are expected to perform complex functionalities within
biological systems [1], [2], [3], [4]. Example applications of
such networks include transporting drug molecules to target
locations (e.g., disease sites) [5], [6], releasing drug molecules
at target locations [7], [8], [9], and tracking the locations of
mobile targets inside the human body [10], [11].

This paper describes a leader-follower based target detection
model for mobile molecular communication networks. The
leader-follower model proposed in this paper divides key
functionalities of mobile molecular communication networks
to perform target detection over the two types of mobile bio-
nanomachine: leader and follower bio-nanomachines. Leader
bio-nanomachines distribute in the environment to detect a
target. Upon detecting a target, leader bio-nanomachines start
releasing an attractant molecule, creating an attractant gradient
around the target. Follower bio-nanomachines move based
on the attractant gradient made by leader bio-nanomachines,
approach the target, and perform necessary functionalities such
as releasing drug molecules.

The main contributions of this paper include developing a
new model of mobile molecular communication networks for
target detection application. The functional division demon-

strated in this model facilitates the design and development
of bio-nanomachines as it can reduce the number of func-
tionalities that need to be implemented by individual bio-
nanomachines. The main contributions of this paper also in-
clude mathematical modeling and a feasibility study that com-
bines wet laboratory experiments and computer simulations
to demonstrate target detection capabilities of the proposed
model.

The rest of the paper is organized as follows. Section II
introduces briefly the leader-follower based target detection
model that we propose in this paper. Section III mathemat-
ically defines the proposed model and Section IV describes
our feasibility study to demonstrate the potential of the pro-
posed model to perform target detection. Finally, Section V
summarizes this work to conclude the paper.

II. OVERVIEW

This paper proposes a leader-follower based target detection
model of mobile molecular communication networks (i.e.,
collections of mobile bio-nanomachines). Target detection
is a key functionality of mobile molecular communication
networks [10], [12], [13]. Target detection considered in this
paper consists of (1) distributing mobile bio-nanomachines in
the environment, (2) identifying the location of a target in
the environment, and (3) directing bio-nanomachines to the
target location where they perform collective actions (such as
releasing drug molecules).

This section first describes our assumptions for and exam-
ples of key components that constitute the target detection ap-
plication considered in this paper: the monitoring environment,
targets, bio-nanomachines and molecular communication net-
works. This section then introduces the leader-follower based
target detection model of mobile molecular communication
networks.

A. Key Components

Target detection is performed in the environment of interest,
refereed to as the monitoring environment. The monitoring
environment is an aqueous and small-scale environment (e.g.,
up to tens of mm). It may contain molecules and energy
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Fig. 1. Leader-follower based mobile molecular communication network for
target detection

sources for bio-nanomachines to perform necessary function-
alities. It may also contain noise sources such as thermal
noise and other molecules (noise molecules) that may interfere
with functionalities of bio-nanomachines. An example of the
monitoring environment is the internal environment of the
human body.

Targets are biochemical objects that appear in the mon-
itoring environment. Targets are assumed to be chemically
identifiable. For instance, targets may express specific proteins
on their surface, and bio-nanomachines may physically contact
the surface receptors to identify the targets. Targets may also
secrete diffusive marker molecules and bio-nanomachines may
detect the marker molecules to learn the presence of targets.
Examples of targets include diseased cells and tissues.

A bio-nanomachine is defined based on three criteria:
material, size and functionality [14]. A bio-nanomachine is
composed of biomaterials (e.g., proteins, nucleic acids, lipids,
biological cells) with or without non-biomaterials (e.g., mag-
netic particles and gold nanorods) [15]. The size of a bio-
nanomachine ranges from the size of a macromolecule to that
of a biological cell (i.e., dimensions of 1 – 100 µm). A bio-
nanomachine implements a set of simple functionalities to ma-
nipulate molecules, such as detecting, modifying and releasing
molecules. A bio-nanomachine may have mobility, an ability
to produce directional motion in the monitoring environment;
such bio-nanomachines are called mobile bio-nanomachines.
Examples of bio-nanomachines include genetically modified
cells and artificially engineered cells.

Bio-nanomachines communicate through molecular com-
munication to form a molecular communication net-
work. Two types of molecular communication are con-
sidered: diffusion-based and non-diffusion-based molecular
communication. In diffusion-based molecular communica-
tion, bio-nanomachines communicate by propagating diffusive
molecules in the environment [12]. In non-diffusion-based
molecular communication, bio-nanomachines communicate by
using adhesive molecules [13]. In this paper, molecular com-

munication networks that consist of mobile bio-nanomachines
are referred to as mobile molecular communication networks.

B. Leader-follower Based Target Detection Model

The leader-follower based target detection model proposed
in this paper assumes two types of mobile bio-nanomachine,
leader and follower bio-nanomachines that cooperate to per-
form target detection (Fig. 1).
• Leader bio-nanomachines distribute in the environment

to detect a target. Upon detecting a target, leader bio-
nanomachines start releasing attractant molecules while
they continue to move in the environment.

• Follower bio-nanomachines move in the environment and
detect an attractant molecule. In the presence of attractant
molecules, follower bio-nanomachines move preferen-
tially to the higher attractant concentration. Follower bio-
nanomachines implement application-dependent func-
tionalities. For example, in drug delivery applications
(i.e., delivery of drug molecules to target cancer cells),
they may carry drug molecules that need to be released
at target locations.

The proposed model uses an adhesive type of attractant
molecule; namely, bio-nanomachines use non-diffusion-based
molecular communication. Attractant molecules released by
leader bio-nanomachines bind to the surface of an environment
and remain where they are released. As shown in Fig. 1,
the attractant molecules may form a trail as a leader bio-
nanomachine moves in the environment. When the attractant
trail forms a loop that includes the target location, follower
bio-nanomachines following the trail may reach the target.
Using adhesive molecules has several advantages over using
diffusive molecules [13]; for example, the attractant con-
centration remains high for a long period of time (because
the attractant molecules do not diffuse away) allowing bio-
nanomachines to detect the concentration.

III. LEADER-FOLLOWER BASED TARGET DETECTION
MODEL

This section describes the leader-follower based target de-
tection model proposed in this paper. For simplicity, this
section assumes the following:
• The monitoring environment is two-dimensional and de-

fined as an area A.
• The target exists uniformly in a sub-area AT (⊆ A)

within the monitoring environment.
• Bio-nanomachines do not physically interact with each

other. They move in the two-dimensional monitoring area
independently from each other.

A. Leader Bio-nanomachines

We use the Langevin equation to describe the mobility of
a leader bio-nanomachine. The Langevin equation originally
describes Brownian motion of a particle in a fluid medium;
here it is applied to model the mobility of a bio-nanomachine.

Let Sl denote a set of leader bio-nanomachines. For each
leader bio-nanomachine i ∈ Sl, we have



d2 ~Xi(t)

dt2
= −αd

~Xi(t)

dt
+ β

d ~W (t)

dt
, (1)

where ~Xi(t) is the location of leader bio-nanomachine i at
time t, α is a positive constant determining the resistance to
the bio-nanomachine’s motion, β is a positive constant deter-
mining the degree of noise effects on the bio-nanomachine’s
motion, and ~W (t) is the Wiener process (noise effects).

A leader bio-nanomachine is either releasing M(> 0)
attractant molecules (per unit time) or not releasing attractant
molecules according to the following rules:

• Leader bio-nanomachine i (∈ Sl) in the target area
( ~Xi(t) ∈ AT ) releases attractant molecules.

• Leader bio-nanomachine i (∈ Sl) outside the target area
( ~Xi(t) /∈ AT ) releases attractant molecules if it recently
visited the target area, namely, if the time elapsed since its
most recent visit to the target area is within the attractant
release time duration T . Leader bio-nanomachine i does
not release attractant molecules if it never visited the
target area.

B. Attractant Concentration

Attractant molecules released by leader bio-nanomachines
remain where they are released. Attractant molecules do not
diffuse as they are assumed to be adhesive and bind to the
surface of the monitoring environment. Attractant molecules
in the environment decay with time. Let c(~x, t) denote the
surface concentration of attractant molecule at location ~x and
time t. Then the rate of change in c(~x, t) is given by a partial
differential equation:

∂c(~x, t)

∂t
=

∑
i∈Sa(t)

Mδ(~x− ~Xi(t))− kc(~x, t), (2)

where Sa(t) is the set of active leader bio-nanomachines
at time t, δ(·) is the Dirac delta function expressing the
locations where leader bio-nanomachines release attractant
molecules, and k is the degradation rate constant of the
attractant molecule.

C. Follower Bio-nanomachines

We also use the Langevin equation to describe the mobility
of a follower bio-nanomachine. Let Sf denote a set of follower
bio-nanomachines. For each follower bio-nanomachine i ∈ Sf ,
we have

d2 ~Xi(t)

dt2
= −αd

~Xi(t)

dt
+ β

d ~W (t)

dt
+ γ ∇c(~x, t)|~x= ~Xi(t)

, (3)

where γ is a positive constant determining the impact of
the attractant concentration gradient ∇c(~x, t) at location ~x =
~Xi(t) on the directional motion of the bio-nanomachine and
∇ = ~ex

∂
∂x + ~ey

∂
∂y .

IV. FEASIBILITY STUDY

This section describes our feasibility study to demonstrate
that the leader and follower bio-nanomachines defined in
Section III collectively perform target detection. The feasibility
study consists of (1) wet-laboratory experiments to estimate
model parameters and (2) computer simulations in which esti-
mated parameter values are used to demonstrate the collective
behavior of leader and follower bio-nanomachines to perform
target detection.

A. Parameter Estimation

We first performed wet laboratory experiments to identify
key parameters α, β, and γ in (1) and (3). In wet laboratory
experiments, we used endothelial cells as a model of bio-
nanomachines since they are known to produce directional
motion [16]. We also used fibronectin as an attractant molecule
since endothelial cells appear to move up the fibronectin
gradient [17], [18].

We performed two sets of experiments. In the first set of
experiments (control experiments), we spread cells on a glass
surface without fibronectin and fibronectin gradients. In the
second set of experiments, we spread cells on a gradient
surface where the fibronectin concentration increases linearly
along a direction on the surface. In both sets of experiments,
we tracked locations of cells every 10 min over 12 hours.
Figs. 2A-C show representative trajectories of selected cells:
Fig. 2A from the first set of experiments and Figs. 2B and C
from the second set of experiments.

Each trajectory of a cell is given as a sequence of the
cell’s locations on a two-dimensional surface: (xi, yi) with
i = 0, 1, · · · , 72. (The cell’s location was measured every
10 min over 12 hours, yielding a sequence of 73 locations.)
Given a trajectory, we used the maximum likelihood estimation
(MLE) to estimate α, β, γ. Briefly, we first rewrote (3) as

d2X(t)

dt2
= −αdX(t)

dt
+ β

dWx(t)

dt
+ γ′, (4)

d2Y (t)

dt2
= −αdY (t)

dt
+ β

dWy(t)

dt
, (5)

where the fibronectin gradient is assumed to be made along
the x-axis and γ′ determines the directional force that moves
cells along the axis: γ′ = γ ∂c

∂x where ∂c
∂x is a constant since

the gradient is linear.
We then used the MLE method to estimate the parameter

values α, β, γ′. For each location (xi, yi) (i = 1, 2, · · · ),
we used (4) and (5) to describe the probability Pi that the
cell moves from (xi, yi) to its next location (xi+1, yi+1). We
then found parameter values α, β, γ′ that can maximize the
likelihood function (

∏72
i=1 Pi). We also estimated the value of

γ based on the relationship γ′ = γ ∂c
∂x and an experimentally

measured value of ∂c
∂x = 0.02 (AU/µm).

The MLE method is applied to the trajectories shown in
Figs. 2A-C and parameter values are estimated (Table I). Note
that, for the trajectory shown in Fig. 2A, we used γ′ = 0
since no fibronectin gradient was formed on the substrate used
in the experiment. Further, these parameter values are used
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Fig. 2. Trajectories of cells that moved on a non-gradient substrate (A) or
gradient substrate (B and C), each obtained from 12 hours of time-lapse
imaging. On a gradient substrate, the fibronectin concentration increases from
left to right. The cell’s starting position is the origin of the two-dimensional
coordinate. Parameter values estimated from trajectories A-C are used to
produce trajectories D-F. Axis unit is µm.

TABLE I
ESTIMATED PARAMETER VALUES

Trajectory shown in α β γ′ γ

Fig. 2A 0.097 0.001 – –
Fig. 2B 0.067 0.019 0.011 0.55
Fig. 2C 0.095 0.020 0.042 2.1

in (4) and (5) to produce trajectories in silico. Figs. 2D-F
show examples of reproduced trajectories: Fig. 2D is based
on parameter values estimated from the trajectory in Fig. 2A,
Fig. 2E from Fig. 2B, and Fig. 2F from Fig. 2C.

B. Simulation Configurations

For computer simulations, we chose α = 0.067, β = 0.019,
γ = 0.55 in Table I. Other parameters are determined arbitrary:
M = 1, T = 104, and k = 10−6. The simulation environment
is also configured arbitrary as follows:

• The monitoring environment is defined as A = {(x, y)|−
L
2 ≤ x ≤ L

2 ,−
L
2 ≤ y ≤ L

2 } with L = 1 (cm). It is then
divided into 100× 100 (µm2) square areas to solve (2).

• The target area is defined as AT = {(x, y)| − LT

2 ≤ x ≤
LT

2 ,−
LT

2 ≤ y ≤
LT

2 } with LT = 100 (µm).
At time t = 0, 100 leader bio-nanomachines and 100

follower bio-nanomachines are placed all at the same location
(x, y) = (−d, 0) with d = 1000 (µm). All these bio-
nanomachines have zero moving velocity at t = 0 and move
based on (1) or (3) for t > 0. Bio-nanomachines are not
allowed to move outside the monitoring environment; they
bounce back when they hit the boundaries.

C. Simulation Results

Fig. 3 shows how the attractant concentration, leader bio-
nanomachine distribution and follower bio-nanomachine dis-
tribution evolve with time. As shown in the series of images
(top), leader bio-nanomachines distribute in the environment,
and eventually they become relatively uniformly distributed in
the environment (at t = 165 hours). The target area is defined
as the square area in the top left image in Fig. 3, and leader
bio-nanomachines that enter this area start releasing attractant
molecules. The leader bio-nanomachines releasing attractant
molecules continue to move in the environment, leading to
the formation of attractant concentration gradients as shown
in the series of images (middle). Since attractant molecules
assumed in this paper are adhesive and not diffusive, the
attractant concentration tends to form trails; see the attractant
concentrations at t = 35 and 85 (hours). As more leader bio-
nanomachines release attractant molecules and move in the
environment, the attractant gradient is formed. The attractant
concentration is high at the target area and it tends to decrease
as the distance from the target area increases. This formation
of the attractant concentration gradient allows follower bio-
nanomachines to move closer to the target area. As shown in
the series of images (bottom), follower bio-nanomachines are
gradually attracted to the target area.

V. CONCLUSION

This paper described a leader-follower based target detec-
tion model for mobile molecular communication networks.
The main advantage of this model is to divide key functional-
ities of mobile molecular communication networks over two
types of bio-nanomachines. This paper also described mathe-
matical models to examine the behavior of the leader-follower
based model. It further described wet laboratory experiments
to estimate the parameter values for the mathematical models,
and demonstrated through computer simulations the collective
behavior of leader and follower bio-nanomachines to perform
target detection.

Both modeling and experimental studies described in this
paper are preliminary. We plan to perform more realistic
modeling and an extensive set of experiments to investigate the
feasibility of the leader-follower based target detection model
that we proposed in this paper.
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