A performance study to ensure emergency communications during large scale disasters using satellite/terrestrial integrated mobile communications systems

K Okada, T Shimazu, A Fujiki, Y Fujino… - IEICE Transactions on …, 2015 - search.ieice.org
K Okada, T Shimazu, A Fujiki, Y Fujino, A Miura
IEICE Transactions on Fundamentals of Electronics, Communications and …, 2015search.ieice.org
The Satellite/Terrestrial Integrated mobile Communication System (STICS), which allows
terrestrial mobile phones to communicate directly through a satellite, has been studied [1].
Satellites are unaffected by the seismic activity that causes terrestrial damage, and therefore,
the STICS can be expected to be a measure that ensures emergency call connection. This
paper first describes the basic characteristics of call blocking rates of terrestrial mobile
phone systems in areas where non-functional base stations are geographically clustered, as …
The Satellite/Terrestrial Integrated mobile Communication System (STICS), which allows terrestrial mobile phones to communicate directly through a satellite, has been studied [1]. Satellites are unaffected by the seismic activity that causes terrestrial damage, and therefore, the STICS can be expected to be a measure that ensures emergency call connection. This paper first describes the basic characteristics of call blocking rates of terrestrial mobile phone systems in areas where non-functional base stations are geographically clustered, as investigated through computer simulations that showed an increased call blocking rate as the number of non-functional base stations increased. Further simulations showed that restricting the use of the satellite system for emergency calls only ensures the STICS's capacity to transmit emergency communications; however, these simulations also revealed a weakness in the low channel utilization rate of the satellite system [2]. Therefore, in this paper, we propose increasing the channel utilization rate with a priority channel framework that divides the satellite channels between priority channels for emergency calls and non-priority channels that can be available for emergency or general use. Simulations of this priority channel framework showed that it increased the satellite system's channel utilization rate, while continuing to ensure emergency call connection [3]. These simulations showed that the STICS with a priority channel framework can provide efficient channel utilization and still be expected to provide a valuable secondary measure to ensure emergency communications in areas with clustered non-functional base stations during large-scale disasters.
search.ieice.org