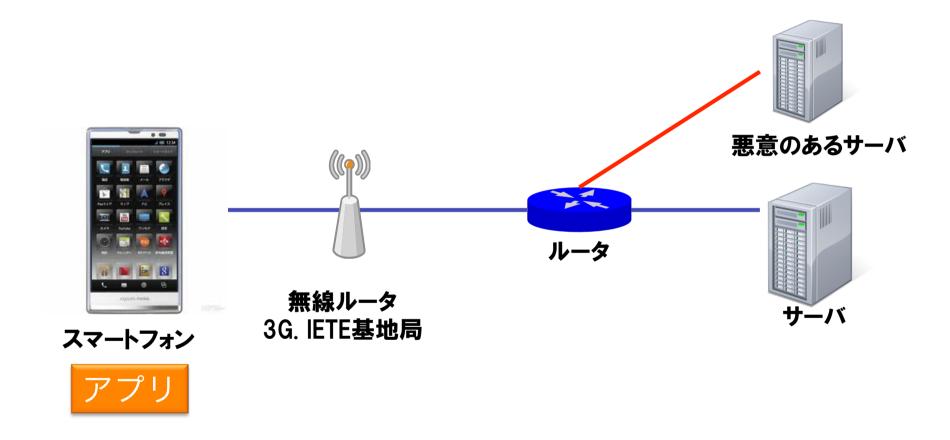


National Institute of Information and Communications Technology

スマートフォン時代のプライバシ保護と リスク管理プラットフォーム

独立行政法人 情報通信研究機構 ネットワークセキュリティ研究所 セキュリティアーキテクチャ研究室

松尾 真一郎

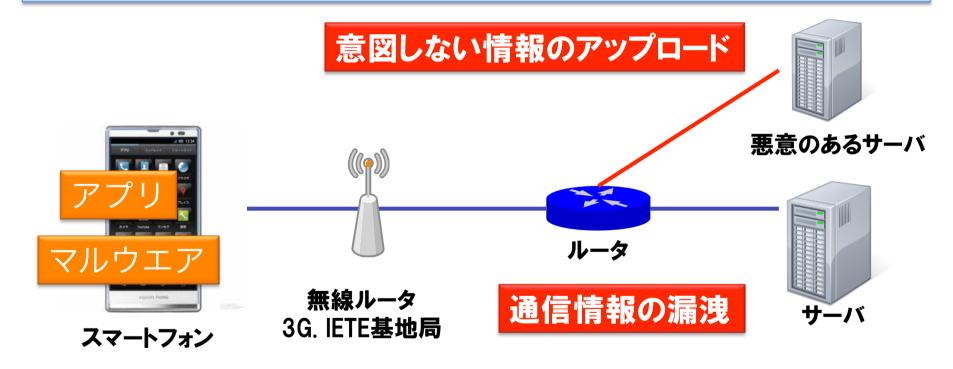


- スマートフォンにおけるセキュリティ・プライバシに 関するリスク
- 2. ネットワーク利用におけるリスク管理に向けたプラットフォーム
- 3. 今後の研究課題と方向性

1.スマートフォンにおける セキュリティ・プライバシに関するリスク

スマートフォン利用時のネットワークの概要

ネットワーク利用における新たな脆弱性



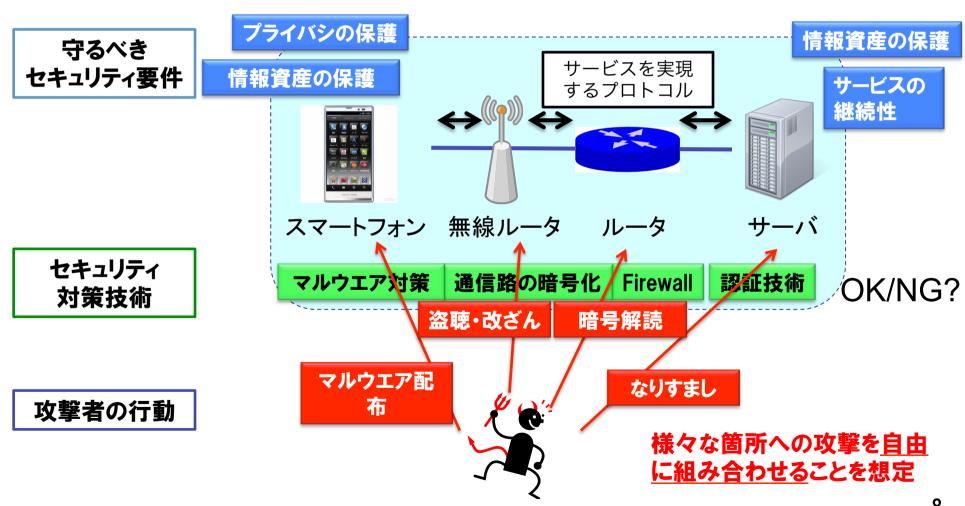
- · 2013年2月4日に論文で 公開
- ・中間者攻撃を利用して、 TLSにおける暗号データの 解読
- TLSプロトコルにおける暗号化部分のCBCモードの使い方(仕様)に起因
- すでに製品では修正を 実施

スマートフォン利用時のリスク

アプリ単体だけではなく、ネットワーク、サーバなどとの組み合わせでリスクが拡大

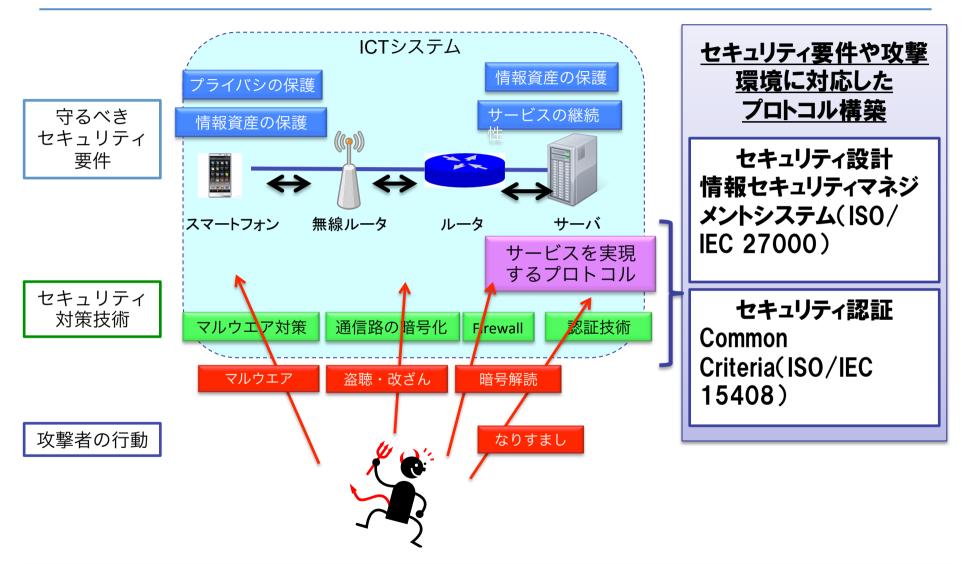
ID/Passwordの漏洩

異なる情報の連携に よるプライバシ漏洩


ネットワーク視点でのリスク評価・リスク管理が必要

2.ネットワーク利用における リスク管理に向けたプラットフォーム

ICTシステムにおけるリスクとは



守るべきセキュリティ要件に対して、対策技術が攻撃者の行動をどれ だけブロックできているか

ICTシステムのセキュリティ確保と現状

複合的な脅威に対して、リスクとコストに見合った対策の構築が必要

現状のシステムセキュリティ評価

- ・ 情報セキュリティマネジメントシステム(ISMS、ISO/IEC 27000)によるリスク分析
- ・ システム設計時に以下の表を作成することで、情報資産ごとのリスクの期待値を 人間の手で評価

情報資産	脅威と発生確率				発生時			
	不正 アクセ ス	改ん	情報漏洩	DoS攻 撃	光王時 の 損失	リスクの 期待値	対策手段	対策費用
Webサイト のページ	1	10%	I	1	1000 万円	100万円	ファイア ウォール	20万円
スマート フォンの 位置	I	I	10%	I	1万円	1,000円	OSによる警 告	1万円
ID・ パスワード	ı	I	10%	1	5億円	5000万 円	データベース 暗号化	100万円

•

リスクの認識における問題

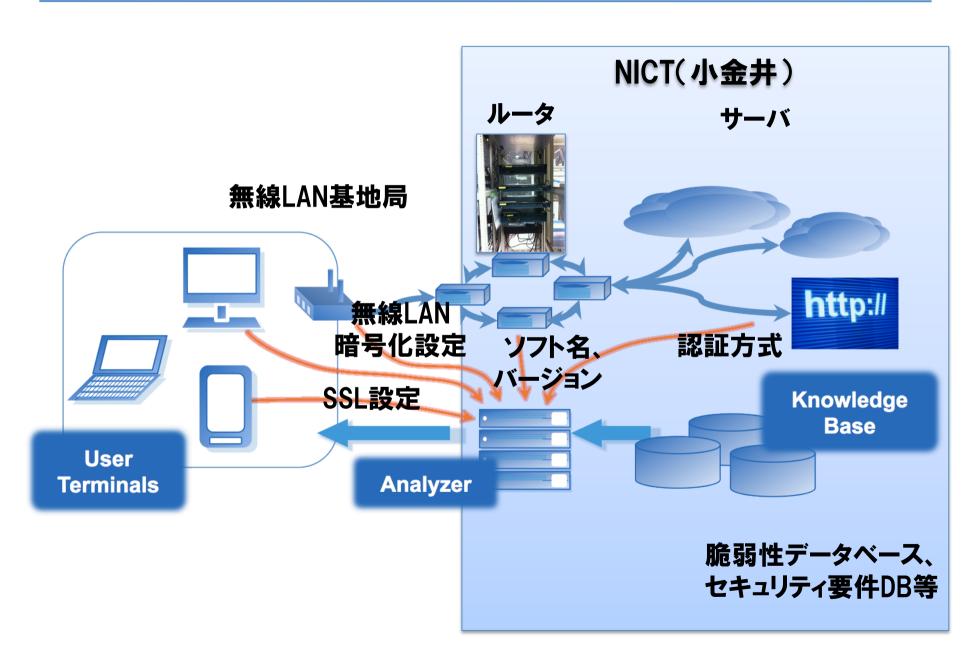
- 多くのネットワークユーザは、利用しているネットワークにおけるセキュリティ・プライバシのリスクの在処を認識できない
 - 問題は(可視化されやすい)マルウエアだけでは ない
 - ・リスクの在処の例
 - 悪意のあるアプリ
 - · 無線LANの暗号/認証の設定
 - ・ サービスの認証方式
 - 問題のある古いバージョンのソフトウエアの継続利用
 - ・ SSLの暗号設定

リスクの認識における問題(続き)

- リスクは、利用するサービスや利用環境によって異なる
 - 本当であれば、ISMSで行うような(一般ユーザに とって)複雑なリスク分析を行う必要があるが、 その手間は掛けられない
- 手間を掛けられるとしても、リスク分析を行う材料 が揃わない
 - ユーザは、手元の情報資産、ソフトウエア、設定 を把握することは困難
 - そもそも、セキュリティ要件を認識できていないかもしれない

リスクの認識に必要なこと

- 1. セキュリティ要件と情報資産が洗い出せること
- 2. ネットワーク環境(攻撃環境)が洗い出せること
- 3. 現在使っている対策技術が洗い出せること
- 4. リスク分析ができること


スマートフォン利用におけるリスク可視化の試みペプ

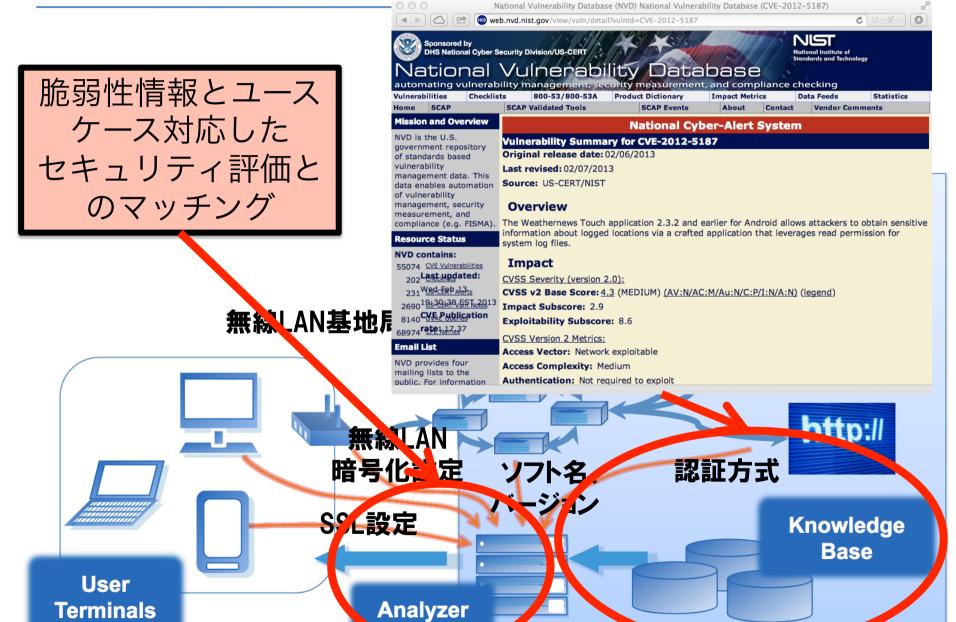
スマートフォンのアプリから、サービスを利用した時のリスクを可視化

- ・ 守るべきセキュリティ要件と情報資産
 - 利用するサービスと想定される途中経路から 判断
- ・ 攻撃者の行動
 - ・ アプリの脆弱性、無線LAN設定や認証方式の甘 さ、途中経路の脆弱性などから判断
- 対策技術
 - 利用されている暗号化、認証などから判断

リスク可視化システムの構成

リスク可視化システムのユーザインターフェース 🚧

Simple Mode


Topology Mode

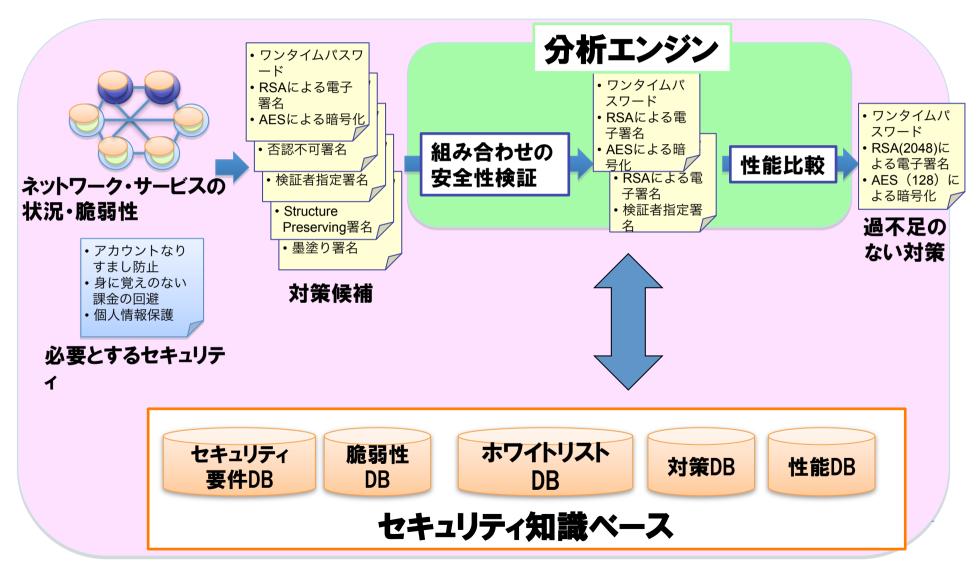
Detailed Mode

Demo

脆弱性情報とのマッチング

リスクの管理に向けて

リスクを常に許容範囲に保つためのサイクル


- 可視化されたリスクに対して適切な対策を取る
- リスクに変動を及ぼす、新たな攻撃や脆弱性が発生した場合には、リスクの再評価を行い、管理策を適用

- リスク分析の自動化によるコスト削減
- ・ 最新の脆弱性情報を有する知識ベースの構築
- 管理策の提示と、適用に向けたアシスト

セキュリティ知識ベース・分析エンジンREGISTA

REGISTAの特徴

リスク評価に必要なセキュリティ 知識ベース

- サービスに必要なセキュリティ要件
- ・ソフトウエア、ネットワーク機器等の脆弱性
- ・ 標準的なセキュリティ対策技術
- セキュリティ技術の組み合わせに対して、 検証済みの対策を収めたホワイトリスト

より精密な分析を 行うための分析 エンジン

・ 形式化手法を用いることで、漏れのない 対策技術のセキュリティ評価

現在、NICTで構築、実証中

3.今後の研究課題と方向性

スマートフォンにおけるリスク分析の明確化

スマートフォンにおけるリスク分析手法の検討が必要

- PCとは異なる運用モデル、アーキテクチャ
 - アプリケーション主体となるため、アプリケーションの 挙動のモデル化が必要
- ・ スマートフォン特有の情報資産
 - 電話帳
 - · 写真
 - ・ GPS、ライフログ etc.
- SNS、クラウド連携を考慮したセキュリティ・プライバシ 保護要件
 - ・ 情報の流通範囲の拡大
 - リンクによるプライバシ問題

スマートフォンのリスクの可視化

- アプリケーション自体セキュリティ・プライバシ評価
 - ・ 各種アプリ解析結果との連携
 - アプリケーションの脆弱性や攻撃性と、ユーザ 視点でのリスクの関連性
 - アプリケーション単体だけでなく、他サービスと の連携によるリスクの評価
- ・リスク評価結果の可視化方法
 - ・ ユーザのリテラシーレベルに応じた可視化
 - ・ 利用者に誤解を与えない可視化方法の検討