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Background

Huge corpora are available
Corpus-based Natural Language
Processing

Orthographic variants cause problems:
mismatch at looking up a dictionary
raise perplexity
etc.
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Objectives

To detect transliterated orthographic
variants in a corpus.

To detect mis-typed words in a corpus.
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Transliterated variants

English word: report

Transliterated
Japanese

ripooto repooto

Not only Japanese; e.g., in English,
Chinese proper noun: Shanhaiguan,
Shanhaikwan, or Shanhaikuan
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Approaches

Rule-based
high accuracy, weak at irregular
variants
Back-transliteration
very difficult
Approximate string matching
robust, but not accurate

Enhancements for high accuracy:
extend edit distance
use contextual information
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Approaches

Rule-based
high accuracy, weak at irregular
variants
Back-transliteration
very difficult
Approximate string matching[Take!]

Enhancements for high accuracy:
extend edit distance
use contextual information
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Katakana transliteration

approximate pronunciation
there is no specific guideline
several source languages
e.g., English word virus
uirusu (Latin) ↔ viirusu (German)

sometimes transliterated from its
spelling

There is considerable variation.
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Overview of detecting method
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String similarity

Input: katakana words w1 and w2

S1[1..m], S2[1..n]: romanized strings for w1

and w2

Sims(w1, w2) = 1 −
EDk(S1, S2)

m + n

EDk(S1, S2) = D(m, n)
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Edit distance for katakana

D(i, j) = min







D(i − 1, j) + id(i, j),

D(i − 1, j − 1) + 2t(i, j),

D(i, j − 1) + id(i, j)






,

where t(i, j) = 0 if S1(i) = S2(j); otherwise
the value follows t(i, j)-table,
and id(i, j) follows id(i, j)-table that
assigns an insertion-deletion distance.
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t(i, j)-table

rules for katakana matching (20 rules)
i − 3 i − 2 i − 1 i i + 1 i + 2 i + 3

t(i, j)
j − 3 j − 2 j − 1 j j + 1 j + 2 j + 3

∗ ∗ t [ou] u ∗ ∗
0.4

∗ ∗ t [ou] u ∗ ∗

∗ ∗ ∗ [dz] i ∗ ∗
0.25

∗ ∗ ∗ [dz] i ∗ ∗

‘∗’ means any character.
‘[ ]’ means character class in a regular expression.
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id(i, j)-table

similar to t(i, j)-table (13 rules)

Some characters easily inserted and
deleted in particular context → relax
For example:
English word decanter

dekyantaa ↔ dekantaa

Consonant insertion-deletion → penalize
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Contextual similarity

given by inner product of two vectors:

simc(kwi, kwj) = cos(vec(kwi), vec(kwj)),

where vec(kwi) is the contextual vector
that corresponds to the katakana word
kwi.
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Contextual vector

syanpen o gurasu de
(basic form is kudasaru)

(A glass of champagne, please.)

vec(syanpen)

vec(gurasu)

=[N;gurasu:1, P;kudasaru:1, 
    PP;o-kudasaru:1]

=[N;syanpen:1, P;kudasaru:1, 
    PP;de-kudasaru:1]

kudasai
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Weighting element of vector

frequently appear 6= important
There are words

co-occur with many other words,
co-occur with a specific word.

Load tf-idf-like weight onto each element
of the contextual vector.
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How to decide a variant

follows a decision list considering the
following points:

length

frequency in the corpus

string similarity with ordinal edit distance

string similarity with edit distance for katakana words

contextual similarity

dictionary (almost 8,000 entries)
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Experiment

Corpus: ATR Basic Travel Expression
Corpus [200k sentences]

160k: used for parameter estimation,
and verification of rules

40k: used as a test set

Conditions:
Dictionary (8k entries): use / not use
Contextual similarity: use / not use
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Experimental result

Dic. Context Recall Precision F

yes yes 0.827 (62/75) 0.886 (62/70) 0.855

yes no 0.907 (68/75) 0.872 (68/78) 0.889

no yes 0.800 (60/75) 0.822 (60/73) 0.811

no no 0.880 (66/75) 0.725 (66/91) 0.795

Dictionary: recall ↑ precision ↑

Contextual similarity: recall ↓ precision ↑
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Discussion

dictionary helped detection for short
words and proper nouns
some mis-types were detected;
e.g., buraun’ ↔ buran’ (brown)
contextual similarity caused side effect
data sparseness
→ statistical approach may be unfit for
variants detection
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Future works

To automate estimation of parameters
To use large dictionary (e.g., more
than 100k entries)
To detect other types of variant
e.g., cross-script orthographic variants
(kanji vs. hiragana vs. katakana)
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Conclusions

modified edit distance for katakana
words
contextual similarity didn’t work with
ATR corpus
dictionary worked very well
performed almost 90% in F-measure
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Thank you very much.
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Errata

Formulas (1) and (2) (pages 711 & 712, Sections 3
and 3.1)

2ED → ED

Formula (5) (p. 713, Section 3)

W (kwi, ei) = f(kwi, ei)log

(

N

sf(kwi)

)

Parameter (p. 713, Section 4, 2nd paragraph)
THst1 = 9.4 → THst1 = 0.94
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Appendix - weighting element of vector

Very simple tf-idf like weighting

W (kwi, ei) = f (kwi, ei) log

(

N

sf (kwi)

)

kwi: katakana word
ei: element of a vector
f(kwi, ei): frequency of ei which is a element of kwi-vector
N : # of katakana words in the corpus

sf(kwi): sentence frequency which includes kwi
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Appendix - Decision list

length frequency simed sims simc decision

> THlen ∗ > THed1 > THst1 ∗ variant

<= THlen > THfreq ∗ ∗ < THcos1 not variant

< THlen ∗ ∗ ∗ > THcos2 variant

Both words have entries in pre-defined dictionary not variant

∗ ∗ > THed2 > THst2 ∗ variant

∗ ∗ ∗ ∗ ∗ not variant
‘∗’ means any conditions.
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Appendix - dictionary impact
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Appendix - closed test

Dic. Con. Recall Precision F

yes yes 0.820 (296/361) 0.931 (296/318) 0.872

yes no 0.850 (307/361) 0.930 (307/330) 0.889

no yes 0.823 (297/361) 0.903 (297/329) 0.861

no no 0.850 (307/361) 0.862 (307/356) 0.856
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Appendix - detected examples

successfully detected
aisyadoo - aisyadou (eye shadow)
pikurusu - pikkuruzu (pickles)
mis-detected
mari (Mari) - marii (Mary )
maaton (Murton) - maton (mutton)
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Appendix - Dictionary sample

@aisyeedo@
@aisyadoo@@aisyadou@
...
@uirusu@@biirusu@@viirusu@...
...
@syunookeru@@sunookeru@
...
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Appendix - trick at t(i, j)

English word: simulate
s i m y u r e e t o

s imy u r e e t o

M

R R R R

M M M M MS S S S

s i m y u r e e t o

s imy u r e e t o

M M M M M M

M=0
S=2

ED=8

R=1

ED  =4k
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Appendix - trick at t(i, j)

English word: simulate

S R S S

s i m y u r e e t o

s imy u r e e t o

M M M M M M

M=0
S=2
R=-2

ED  =4k
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Transliteration for foreign words

3 types of Japanese characters:
hiragana and katakana → syllabary
and kanji (Chinese character)

Katakana: used to transliterate foreign
words
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Appendix - Romanization

Katakana corresponds to one or two
phonemes
We use romanization to capture
pronunciation and to make matching
rules simple.
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Overview of contextual vector

Context: a sentence
What nouns co-occur
How to depend a verb, and what verbs
are depended

Construct contextual vector by using a
dependency analyzer
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Using dictionary

We have already known
the words that are not similar, but they
are variants, and
the words that are very similar, but
they are not variants.

↓

A dictionary will help detecting variants.
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