
Detecting Transliterated
Orthographic Variants

via Two Similarity Metrics

Kiyonori Ohtake†, Youichi Sekiguchi‡ and
Kazuhide Yamamoto‡

† ATR Spoken Language Translation Research Laboratories, Japan

‡ Nagaoka University of Technology, Japan

August 24, 2004

Detecting Transliterated Orthographic Variantsvia Two Similarity Metrics – p. 1

Background

Huge corpora are available
Corpus-based Natural Language
Processing

Orthographic variants cause problems:
mismatch at looking up a dictionary
raise perplexity
etc.

Detecting Transliterated Orthographic Variantsvia Two Similarity Metrics – p. 2

Objectives

To detect transliterated orthographic
variants in a corpus.

To detect mis-typed words in a corpus.

Detecting Transliterated Orthographic Variantsvia Two Similarity Metrics – p. 3

Transliterated variants

English word: report

Transliterated
Japanese

ripooto repooto

Not only Japanese; e.g., in English,
Chinese proper noun: Shanhaiguan,
Shanhaikwan, or Shanhaikuan

Detecting Transliterated Orthographic Variantsvia Two Similarity Metrics – p. 4

Approaches

Rule-based
high accuracy, weak at irregular
variants
Back-transliteration
very difficult
Approximate string matching
robust, but not accurate

Enhancements for high accuracy:
extend edit distance
use contextual information

Detecting Transliterated Orthographic Variantsvia Two Similarity Metrics – p. 5

Approaches

Rule-based
high accuracy, weak at irregular
variants
Back-transliteration
very difficult
Approximate string matching[Take!]

Enhancements for high accuracy:
extend edit distance
use contextual information

Detecting Transliterated Orthographic Variantsvia Two Similarity Metrics – p. 5

Katakana transliteration

approximate pronunciation
there is no specific guideline
several source languages
e.g., English word virus
uirusu (Latin) ↔ viirusu (German)

sometimes transliterated from its
spelling

There is considerable variation.

Detecting Transliterated Orthographic Variantsvia Two Similarity Metrics – p. 6

Overview of detecting method

Corpus

Katakana extract Contextual

string contextual

Dependency
Analyzed
Corpus

analyze

vec(
vec(
vec(
vec(

.

score > threshold ?

detected variant:

similaritysimilarity

words Vectors

)
)
)

)ripooto
repooto
uirusu
viirusu

ripooto
repooto
uirusu
viirusu

ripooto repooto

Detecting Transliterated Orthographic Variantsvia Two Similarity Metrics – p. 7

Overview of detecting method

Corpus

Katakana extract Contextual

string contextual

Dependency
Analyzed
Corpus

analyze

vec(
vec(
vec(
vec(

.

score > threshold ?

detected variant:

similaritysimilarity

words Vectors

)
)
)

)ripooto
repooto
uirusu
viirusu

ripooto
repooto
uirusu
viirusu

ripooto repooto

Detecting Transliterated Orthographic Variantsvia Two Similarity Metrics – p. 7

String similarity

Input: katakana words w1 and w2

S1[1..m], S2[1..n]: romanized strings for w1

and w2

Sims(w1, w2) = 1 −
EDk(S1, S2)

m + n

EDk(S1, S2) = D(m, n)

Detecting Transliterated Orthographic Variantsvia Two Similarity Metrics – p. 8

Edit distance for katakana

D(i, j) = min







D(i − 1, j) + id(i, j),

D(i − 1, j − 1) + 2t(i, j),

D(i, j − 1) + id(i, j)






,

where t(i, j) = 0 if S1(i) = S2(j); otherwise
the value follows t(i, j)-table,
and id(i, j) follows id(i, j)-table that
assigns an insertion-deletion distance.

Detecting Transliterated Orthographic Variantsvia Two Similarity Metrics – p. 9

t(i, j)-table

rules for katakana matching (20 rules)
i − 3 i − 2 i − 1 i i + 1 i + 2 i + 3

t(i, j)
j − 3 j − 2 j − 1 j j + 1 j + 2 j + 3

∗ ∗ t [ou] u ∗ ∗
0.4

∗ ∗ t [ou] u ∗ ∗

∗ ∗ ∗ [dz] i ∗ ∗
0.25

∗ ∗ ∗ [dz] i ∗ ∗

‘∗’ means any character.
‘[]’ means character class in a regular expression.

Detecting Transliterated Orthographic Variantsvia Two Similarity Metrics – p. 10

id(i, j)-table

similar to t(i, j)-table (13 rules)

Some characters easily inserted and
deleted in particular context → relax
For example:
English word decanter

dekyantaa ↔ dekantaa

Consonant insertion-deletion → penalize

Detecting Transliterated Orthographic Variantsvia Two Similarity Metrics – p. 11

Contextual similarity

given by inner product of two vectors:

simc(kwi, kwj) = cos(vec(kwi), vec(kwj)),

where vec(kwi) is the contextual vector
that corresponds to the katakana word
kwi.

Detecting Transliterated Orthographic Variantsvia Two Similarity Metrics – p. 12

Contextual vector

syanpen o gurasu de
(basic form is kudasaru)

(A glass of champagne, please.)

vec(syanpen)

vec(gurasu)

=[N;gurasu:1, P;kudasaru:1,
 PP;o-kudasaru:1]

=[N;syanpen:1, P;kudasaru:1,
 PP;de-kudasaru:1]

kudasai

Detecting Transliterated Orthographic Variantsvia Two Similarity Metrics – p. 13

Weighting element of vector

frequently appear 6= important
There are words

co-occur with many other words,
co-occur with a specific word.

Load tf-idf-like weight onto each element
of the contextual vector.

Detecting Transliterated Orthographic Variantsvia Two Similarity Metrics – p. 14

How to decide a variant

follows a decision list considering the
following points:

length

frequency in the corpus

string similarity with ordinal edit distance

string similarity with edit distance for katakana words

contextual similarity

dictionary (almost 8,000 entries)

Detecting Transliterated Orthographic Variantsvia Two Similarity Metrics – p. 15

Experiment

Corpus: ATR Basic Travel Expression
Corpus [200k sentences]

160k: used for parameter estimation,
and verification of rules

40k: used as a test set

Conditions:
Dictionary (8k entries): use / not use
Contextual similarity: use / not use

Detecting Transliterated Orthographic Variantsvia Two Similarity Metrics – p. 16

Experimental result

Dic. Context Recall Precision F

yes yes 0.827 (62/75) 0.886 (62/70) 0.855

yes no 0.907 (68/75) 0.872 (68/78) 0.889

no yes 0.800 (60/75) 0.822 (60/73) 0.811

no no 0.880 (66/75) 0.725 (66/91) 0.795

Dictionary: recall ↑ precision ↑

Contextual similarity: recall ↓ precision ↑

Detecting Transliterated Orthographic Variantsvia Two Similarity Metrics – p. 17

Discussion

dictionary helped detection for short
words and proper nouns
some mis-types were detected;
e.g., buraun’ ↔ buran’ (brown)
contextual similarity caused side effect
data sparseness
→ statistical approach may be unfit for
variants detection

Detecting Transliterated Orthographic Variantsvia Two Similarity Metrics – p. 18

Future works

To automate estimation of parameters
To use large dictionary (e.g., more
than 100k entries)
To detect other types of variant
e.g., cross-script orthographic variants
(kanji vs. hiragana vs. katakana)

Detecting Transliterated Orthographic Variantsvia Two Similarity Metrics – p. 19

Conclusions

modified edit distance for katakana
words
contextual similarity didn’t work with
ATR corpus
dictionary worked very well
performed almost 90% in F-measure

Detecting Transliterated Orthographic Variantsvia Two Similarity Metrics – p. 20

Thank you very much.

Detecting Transliterated Orthographic Variantsvia Two Similarity Metrics – p. 21

Errata

Formulas (1) and (2) (pages 711 & 712, Sections 3
and 3.1)

2ED → ED

Formula (5) (p. 713, Section 3)

W (kwi, ei) = f(kwi, ei)log

(

N

sf(kwi)

)

Parameter (p. 713, Section 4, 2nd paragraph)
THst1 = 9.4 → THst1 = 0.94

Detecting Transliterated Orthographic Variantsvia Two Similarity Metrics – p. 22

Appendix - weighting element of vector

Very simple tf-idf like weighting

W (kwi, ei) = f (kwi, ei) log

(

N

sf (kwi)

)

kwi: katakana word
ei: element of a vector
f(kwi, ei): frequency of ei which is a element of kwi-vector
N : # of katakana words in the corpus

sf(kwi): sentence frequency which includes kwi

Detecting Transliterated Orthographic Variantsvia Two Similarity Metrics – p. 23

Appendix - Decision list

length frequency simed sims simc decision

> THlen ∗ > THed1 > THst1 ∗ variant

<= THlen > THfreq ∗ ∗ < THcos1 not variant

< THlen ∗ ∗ ∗ > THcos2 variant

Both words have entries in pre-defined dictionary not variant

∗ ∗ > THed2 > THst2 ∗ variant

∗ ∗ ∗ ∗ ∗ not variant
‘∗’ means any conditions.

Detecting Transliterated Orthographic Variantsvia Two Similarity Metrics – p. 24

Appendix - dictionary impact

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14
word length

F-measure

with dictionary

without dictionary

Detecting Transliterated Orthographic Variantsvia Two Similarity Metrics – p. 25

Appendix - closed test

Dic. Con. Recall Precision F

yes yes 0.820 (296/361) 0.931 (296/318) 0.872

yes no 0.850 (307/361) 0.930 (307/330) 0.889

no yes 0.823 (297/361) 0.903 (297/329) 0.861

no no 0.850 (307/361) 0.862 (307/356) 0.856

Detecting Transliterated Orthographic Variantsvia Two Similarity Metrics – p. 26

Appendix - detected examples

successfully detected
aisyadoo - aisyadou (eye shadow)
pikurusu - pikkuruzu (pickles)
mis-detected
mari (Mari) - marii (Mary)
maaton (Murton) - maton (mutton)

Detecting Transliterated Orthographic Variantsvia Two Similarity Metrics – p. 27

Appendix - Dictionary sample

@aisyeedo@
@aisyadoo@@aisyadou@
...
@uirusu@@biirusu@@viirusu@...
...
@syunookeru@@sunookeru@
...

Detecting Transliterated Orthographic Variantsvia Two Similarity Metrics – p. 28

Appendix - trick at t(i, j)

English word: simulate
s i m y u r e e t o

s imy u r e e t o

M

R R R R

M M M M MS S S S

s i m y u r e e t o

s imy u r e e t o

M M M M M M

M=0
S=2

ED=8

R=1

ED =4k

Detecting Transliterated Orthographic Variantsvia Two Similarity Metrics – p. 29

Appendix - trick at t(i, j)

English word: simulate

S R S S

s i m y u r e e t o

s imy u r e e t o

M M M M M M

M=0
S=2
R=-2

ED =4k

Detecting Transliterated Orthographic Variantsvia Two Similarity Metrics – p. 29

Transliteration for foreign words

3 types of Japanese characters:
hiragana and katakana → syllabary
and kanji (Chinese character)

Katakana: used to transliterate foreign
words

Detecting Transliterated Orthographic Variantsvia Two Similarity Metrics – p. 30

Appendix - Romanization

Katakana corresponds to one or two
phonemes
We use romanization to capture
pronunciation and to make matching
rules simple.

Detecting Transliterated Orthographic Variantsvia Two Similarity Metrics – p. 31

Overview of contextual vector

Context: a sentence
What nouns co-occur
How to depend a verb, and what verbs
are depended

Construct contextual vector by using a
dependency analyzer

Detecting Transliterated Orthographic Variantsvia Two Similarity Metrics – p. 32

Using dictionary

We have already known
the words that are not similar, but they
are variants, and
the words that are very similar, but
they are not variants.

↓

A dictionary will help detecting variants.

Detecting Transliterated Orthographic Variantsvia Two Similarity Metrics – p. 33

	Background
	Objectives
	Transliterated variants
	Approaches
	Approaches

	Katakana transliteration
	Overview of detecting method
	Overview of detecting method

	String similarity
	Edit distance for katakana
	$t(i,j)$-table
	$id(i,j)$-table
	Contextual similarity
	Contextual vector
	Weighting element of vector
	How to decide a variant
	Experiment
	Experimental result
	Discussion
	Future works
	Conclusions
	Errata
	Appendix - weighting element of vector
	Appendix - Decision list
	Appendix - dictionary impact
	Appendix - closed test
	Appendix - detected examples
	Appendix - Dictionary sample
	Appendix - trick at $t(i,j)$
	Appendix - trick at $t(i,j)$

	Transliteration for foreign words
	Appendix - Romanization
	Overview of contextual vector
	Using dictionary

