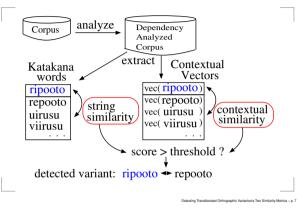
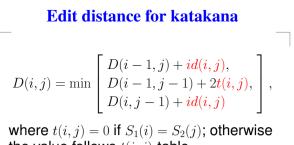


Detertion Transiterated Orthomanhic Variantsvia Two Similarity Metrics - n. 7

Overview of detecting method





the value follows t(i, j)-table, and id(i, j) follows id(i, j)-table that assigns an insertion-deletion distance.

id(i, j)-table

similar to t(i, j)-table (13 rules)

Some characters easily inserted and deleted in particular context \rightarrow relax For example: English word *decanter*

dekyantaa ↔ dekantaa

Consonant insertion-deletion \rightarrow penalize

String similarity

Input: katakana words w_1 and w_2 $S_1[1..m]$, $S_2[1..n]$: romanized strings for w_1 and w_2

$$Sim_s(w_1, w_2) = 1 - \frac{ED_k(S_1, S_2)}{m+n}$$

 $ED_k(S_1, S_2) = D(m, n)$

t(i, j)-table

rules for katakana	matching	(20 rules)
--------------------	----------	------------

i-3	i - 2 j - 2	i-1	i	i+1	i+2	i+3	t(i i)
j-3	j-2	j-1	j	j+1	j+2	j+3	$\iota(\iota,j)$
	*			u	*	*	0.4
*	*	t	[ou]	u	*	*	0.4
*	*	*	[dz]	i	*	*	0.25
*	*	*	[dz]	i	*	*	0.25
1.1 mag		aharaa	tor.				

'*' means any character.

[]' means character class in a regular expression.

Contextual similarity

given by inner product of two vectors:

 $sim_c(kw_i, kw_j) = \cos(vec(kw_i), vec(kw_j)),$

where $vec(kw_i)$ is the contextual vector that corresponds to the katakana word kw_i .

Contextual vector syanpen o gurasu de kudasai (basic form is kudasaru) シャンペンを グラスで ください (A glass of champagne, please.) vec(syanpen) =[N;gurasu:1, P;kudasaru:1, PP;o-kudasaru:1] vec(gurasu) =[N;syanpen:1, P;kudasaru:1, PP;de-kudasaru:1]

Weighting element of vector

frequently appear \neq important There are words

- co-occur with many other words,
- co-occur with a specific word.

Load tf-idf-like weight onto each element of the contextual vector.

How to decide a variant

follows a decision list considering the following points:

- length
- frequency in the corpus
- string similarity with ordinal edit distance
- string similarity with edit distance for katakana words
- contextual similarity
- dictionary (almost 8,000 entries)

Experiment

Corpus: ATR Basic Travel Expression Corpus [200k sentences]

160k: used for parameter estimation, and verification of rules 40k: used as a test set

Conditions:

Dictionary (8k entries): Use / not use Contextual similarity: Use / not use

Experimental result

Dic.	Context	Recall	Precision	F
yes	yes	0.827 (62/75)	0.886 (62/70)	0.855
yes	no	0.907 (68/75)	0.872 (68/78)	0.889
no	yes	0.800 (60/75)	0.822 (60/73)	0.811
no	no	0.880 (66/75)	0.725 (66/91)	0.795

Dictionary: recall ↑ precision ↑ Contextual similarity: recall ↓ precision ↑

Future works

- To automate estimation of parameters
- To use large dictionary (e.g., more than 100k entries)
- To detect other types of variant e.g., cross-script orthographic variants (kanji vs. hiragana vs. katakana)

Discussion

- dictionary helped detection for short words and proper nouns
- some mis-types were detected;
 e.g., buraun' ↔ buran' (brown)
- contextual similarity caused side effect
- data sparseness
 → statistical approach may be unfit for variants detection

Conclusions

- modified edit distance for katakana words
- contextual similarity didn't work with ATR corpus
- dictionary worked very well
- performed almost 90% in F-measure

Thank you very much.

Errata

Formulas (1) and (2) (pages 711 & 712, Sections 3 and 3.1)

 $2ED \rightarrow ED$

Formula (5) (p. 713, Section 3)

$$W(kw_i, e_i) = f(kw_i, e_i) \log\left(\frac{N}{sf(kw_i)}\right)$$

Parameter (p. 713, Section 4, 2nd paragraph) $TH_{st1} = 9.4 \rightarrow TH_{st1} = 0.94$

Appendix - weighting element of vector

Very simple tf-idf like weighting

$$W(kw_i, e_i) = f(kw_i, e_i) \log\left(\frac{N}{sf(kw_i)}\right)$$

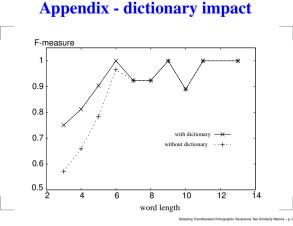
kw_i: katakana word

 e_i : element of a vector

 $f(kw_i, e_i)$: frequency of e_i which is a element of kw_i -vector

N: # of katakana words in the corpus

 $sf(kw_i)$: sentence frequency which includes kw_i



Appendix - detected examples

- successfully detected aisyadoo - aisyadou (eve shadow) pikurusu - pikkuruzu (pickles)
- mis-detected mari (Mari) - marii (Mary) maaton (Murton) - maton (mutton)

Appendix - Decision list

length	frequency	sim_{ed}	sim_s	sim_c	decision
$> TH_{len}$	*	$> TH_{ed1}$	$> TH_{st1}$	*	variant
$\langle = TH_{len}$	$> TH_{freq}$	*	*	$< TH_{cos1}$	not variant
$< TH_{len}$	*	*	*	$> TH_{cos2}$	variant
Both words	not variant				
*	*	$> TH_{ed2}$	$> TH_{st2}$	*	variant
*	*	*	*	*	not variant
'*' mean	s any condit	ions.			

Appendix - closed test

Dic.	Con.	Recall	Precision	F
yes	yes	0.820 (296/361)	0.931 (296/318)	0.872
yes	no	0.850 (307/361)	0.930 (307/330)	0.889
no	yes	0.823 (297/361)	0.903 (297/329)	0.861
no	no	0.850 (307/361)	0.862 (307/356)	0.856

Appendix - Dictionary sample

@aisyeedo@ @aisyadoo@@aisyadou@

@uirusu@@biirusu@@viirusu@...

@syunookeru@@sunookeru@ . . .

Appendix - trick at t(i, j)

Eng	English word: <i>simulate</i>									
s	i	m	у	u	r	e	e	t	0	M=0
Μ	S	S	S	S	Μ	М	М	М	М	S=2
s	у	u	m	i	r	e	e	t	о	ED=8
s	i	m	у	u	r	e	e	t	0	R=1
М	R	R	R	R	М	М	М	М	М	$ED_k=4$
s	у	u	m	i	r	e	e	t	0	DD _k -1

Appendix - trick at t(i, j)

English word: simulate s i m y u r e t 0 e

М	s	R	S	s	М	М	М	М	М	S=2 R=-2
									0	

M=0

Transliteration for foreign words

3 types of Japanese characters: hiragana and katakana \rightarrow syllabary and kanji (Chinese character)

Katakana: used to transliterate foreign words

Katakana corresponds to one or two phonemes

We use romanization to capture pronunciation and to make matching rules simple.

Overview of contextual vector

Context: a sentence

- What nouns co-occur
- How to depend a verb, and what verbs are depended

Construct contextual vector by using a dependency analyzer

Using dictionary

We have already known

- the words that are not similar, but they are variants, and
- the words that are very similar, but they are not variants.

A dictionary will help detecting variants.