平成16年度

研究開発成果報告書

経済的な光ネットワークを実現する高機能 集積化光スイッチングノードの研究開発

委託先:富士通㈱

平成17年5月

情報通信研究機構

平成16年度 研究開発成果報告書

「経済的な光ネットワークを実現する高機能集積化光スイッチングノードの研究開発」

目 次

1	研究開発課題の背景	3
2	研究開発の全体計画 2-1 研究開発課題の概要 2-2 研究開発目標 2-2-1 最終目標 2-2-2 中間目標 2-3 研究開発の年度別計画	4 6 7 8
3	研究開発体制	9 9
4 4-	研究開発実施状況 -1 高機能集積化光スイッチングノードサブシステムの研究開発	10 10 10 20 21
4-	4-1-5 まとめと今後の課題 -2 波長選択スイッチモジュールの研究開発 4-2-1 波長選択スイッチモジュール開発の概要 4-2-2 小型分光光学系の開発 4-2-3 スイッチ光学系の開発	22 23 23 25 28
4-	4-2-4 モジュール化開発 4-2-5 まとめと今後の課題 -3 波長分散補償モジュールの研究開発 4-3-1 波長分散補償モジュール開発の概要 4-3-2 光学系の開発	33 36 37 37 38
4-	 4-3-3 補償量可変機能の開発 4-3-4 スロープモニタ及び制御技術の開発 4-3-5 まとめと今後の課題 -4 偏波モード分散補償モジュールの研究開発 4-4-1 偏波モード分散補償モジュール関発の概要 	 11 12 12 12 13
	4-4-2 偏波制御器の開発 4 4-4-3 可変 DGD 光回路の開発 4 4-4-4 偏波モニタの開発 4 4-4-5 まとめと今後の課題 4	13 14 16 16

4-5	総括		7
-----	----	--	---

- 5 参考資料・参考文献
 - 5-1 研究発表・講演等一覧

1 研究開発課題の背景

近年、高速アクセス網、高速企業網が急速に普及し、これらの通信需要増大に対応す るため、コア網では波長多重伝送システムの敷設が進みつつある。その一方で、都市間 を接続するメトロ網は、ノードのスループットと伝送帯域が大幅に不足するため、ネッ トワーク上のボトルネックとなる。この状況を打破するために、図 1-1 に例示するよ うに、メトロ領域に、波長選択スイッチと各種補償機能を集積化した小規模な光スイッ チングノード(光ハブ)を設置し、光領域でアクセス網とコア網を直接接続する新しい フォトニックネットワークアーキテクチャの構築を提案する。光ハブをアクセス網とコ ア網間の接続ノードとして適用することにより、日本国内の任意の地点間で距離を全く 意識することなく、FTTH の持つ上り・下り双方向 100 Mbit/s の高速アクセス網の能力 をフルに発揮できる経済的ブロードバンドネットワーク網の実現が可能となる。

図 1-1: 次世代フォトニックネットワークと本研究で開発する光スイッチングノード

2 研究開発体の全体計画

2-1 研究開発課題の概要

本提案の高機能集積化光スイッチングノード(図1に例示)は、メトロコア網に適し た小型・低価格かつフレキシビリティの高い光ハブ機能を提供するとともに、 End-to-endの高品質な通信状態を確保するために、経路切替に連動してアダプティブに 動作する、各種の光補償機能を内蔵することを特徴とする。そのための主要開発項目と しては、波長選択スイッチモジュール、波長分散補償モジュール、偏波モード分散補償 モジュール、およびそれらを統合したサブシステムがあり、下記の通り、4つの副課題 に大別して本研究開発を実施する。

副課題ア)高機能集積化光スイッチングノードサブシステムの開発

下記の副課題イ~エの各モジュール機能をインテグレートし、小型・低価格を可能と する機能集積形態を追求する。特に、小型化と低価格化に適した機能統合形態、統合制 御と実現性を考慮した各モジュールへの最適な機能配分、今まで世界的にも全く研究実 績の無い、光スイッチングとアダプティブな光補償技術の融合を実現する高速モニタ・ 制御技術の開発を行う。

副課題イ)波長選択スイッチモジュールの開発

メトロコア網に適した小型・低価格と、フレキシビリティを併せ持つ、波長選択スイ ッチモジュールの開発を行い、光ハブとしての基本である光ルーティング機能を実現す る。図 2-1 のような2入力×2出力の波長選択スイッチ機能、伝送によって生じる波 長間の光パワーレベルの偏差を補償する光パワーレベル調整機能を、図 2-2 に示すよ うな形態で一体集積集することにより、従来にない小型、低損失、低価格を目指す。

図 2-1:2入力2出力波長選択スイッチ基本構成図

図 2-2:分光部とスイッチ部を一体化した波長選択スイッチの構成例

副課題ウ)波長分散補償モジュールの開発

10 Gbit/s 以上の高速伝送でネットワークサイズの制限要因となる波長分散をアダプ ティブに補償する。波長多重信号の波長分散の波長間差(分散スロープ)も併せて補償す る機能が重要である。その補償方法は2つある。ひとつはチャネル間の分散量の変化を 連続的=分散スロープとして捉え、複数のチャンネルを一括で補償する方法(一括スロ ープ補償)であり、もうひとつは、隣接チャネル間の補償量に関らず個別に分散補償量 を設定する方法(個別チャネル補償)である。本副課題では、どちらの方法がよりメト ロに適しているか検討し、更に光スイッチングノード適用に重要でありながら従来デバ イスで困難であった高速応答特性も可能な構造の実現を目指す。

図 2-3:残留分散と波長分散補償モジュールの動作

副課題エ)偏波モード分散補償モジュールの開発

ファイバ状態によっては、偏波モード分散がネットワークサイズの制限要因となるこ とがあり、そのアダティブ補償を行う必要を生じる。波長毎の現象のランダム性により、 補償機能が波長毎に必要になるため、徹底した機能集積化、アレイ化により小型、低価 格化を図る。本偏波モード分散補償モジュールは、40 Gbit/s 以上の超高速伝送におい て特に必要となる。

図 2-4: 偏波モード分散補償モジュールの基本構成図

2-2 研究開発目標

2-2-1 最終目標(平成20年3月末)

副課題ア)高機能集積化光スイッチングノードサブシステムの開発

波長選択スイッチ(光パワーレベル調整機能を含む)、波長分散補償機能、偏波モード 分散補償機能、およびそれらの統合モニタ・制御機能をサブシステムに統合し、実際の ネットワークに適用可能な特性を実現する。具体的には、実際のメトロコア網を模擬し たリング形態のテストベッドを構築し、サブシステムとしての総合的な機能確認を行う。 高機能集積化光スイッチングノードサブシステムの最終目標を下記に示す。

- ・サイズ(体積)、価格:現状技術を用いて光クロスコネクトスイッチ、波長分散補 償器、偏波モード分散補償器を構成・統合した値に対して 20 分の 1
- ・応答速度: ネットワーク全体として 50 ms 以下
- ・入出力ポート数: 2入力2出力
- ・ビットレート: 2.5 ~ 40 Gbit/s
- ・波長帯: C-band(またはL-band)
- ・波長間隔: 25, 50, 100 GHz

副課題イ)波長選択スイッチモジュールの開発

- ・小型化、低損失化、低価格化のための分光光学系、モジュール技術の確立
- ・アナログスイッチング技術の確立(制御含めて <1ms)
 1ms以下の応答速度のアナログスイッチングデバイス

1ms以下の動作に対応した VOA 制御/駆動技術の確立

・モジュールの目標

サイズ: 従来の 1/10、損失: 5dB 以下、価格: 従来の 1/10 光クロスコネクト型スイッチ(合分波器+マトリクススイッ チ+VOA)を基準

波長間隔: 25~100 GHz

光パワーレベル調整機能の集積化

副課題ウ)波長分散補償モジュールの開発

今まで実現されていなかったシステムに適用可能な広い分散補償範囲の実現と光経 路の切替に対応する高速補償動作の実現を最終目標とする。その他、詳細な特性は初年 度にシステム仕様の検討の中で決定する。

・可変補償幅

分散スロープ補償幅:36ps/nm²(全幅, C or L バンド)以上
分散補償幅: ±2000ps/nm 以上・動作速度: 約 10ms(制御系の収束時間を含む)

副課題エ)偏波モード分散補償モジュールの開発

偏波モード分散補償モジュールを構成する要素デバイス(偏波制御器、可変DGD光回路、偏波モニタ)をアダプティブな制御も含めた機能集積化し、かつ、アレイ化を行うこ

とにより、小型化・低価格化を達成する。

- ・8波長以上の機能集積化、アレイ化
- ・100 µ s以下の応答速度の実現
- ・個別の現状技術で構成したモジュールと比較して、サイズ・価格ともに1/10以下

2-2-2 中間目標(平成18年1月末)

副課題ア)高機能集積化光スイッチングノードサブシステムの開発

サイズ・動作速度などに一部制約はあるものの、各モジュールの基本的な機能(光ス イッチング機能、光補償機能)は最終目標と同等のものを実現する。これらを用いて、 各モジュールを統合制御した状態での動作検証実験を行い、課題を明確化し光デバイス 開発にフィードバックすることで、最終目標に向けての開発を推進する。

- ・入出力ポート数:2入力2出力
 - \Rightarrow 1入力N出力(Nは4以上)への修正を反映すべきか?
- ・ビットレート: 10 Gbit/s
- ・波長帯: C-band(またはL-band)
- ・波長間隔: 50 GHz

副課題イ)波長選択スイッチモジュールの開発

基本光学系と機能は最終目標と同等のモジュールを実現し、システム実験を通して、 制御アルゴリズムの指針を得る。

- ・分光光学系の構成決定
- アナログ動作可能なスイッチングデバイスの構造決定

副課題ウ)波長分散補償モジュールの開発

基本的光学特性は最終目標と同等とする。システム評価が可能なレベルのモジュール 化を行う。

副課題エ)偏波モード分散補償モジュールの開発

偏波モード分散補償モジュールを構成する要素デバイス(偏波制御器、可変DGD光 回路、偏波モニタ)の1波長分の基本構成について所要の性能を達成する。

2-3 研究開発の年度別計画

(金額は非公表)

研究開発項目	H15 年度	H16 年度	H17 年度	H18 年度	H19 年度	計	備考
経済的な光ネットワークを実現する高機能集積化 光スイッチングノードの研究開発							
副課題ア) 高機能集積化光スイッチングノードサ ブシステムの開発							
副課題イ)波長選択スイッチモジュールの開発							
副課題ウ)波長分散補償モジュールの開発							
副課題エ)偏波モード分散補償モジュールの開発							
間接経費額(税込み)							
合 計							

注) 1 経費は研究開発項目毎に消費税を含めた額で計上。また、間接経費は直接経費の30%を上限として計上(消費税を含む。)。

2 備考欄に再委託先機関名を記載

3 年度の欄は研究開発期間の当初年度から記載。

3 研究開発体制

3-1 研究開発実施体制

4 研究開発実施状況

4-1 高機能集積化光スイッチングノードサブシステムの研究開発(副課題ア)

4-1-1 光スイッチングノードサブシステム開発の概要

本副課題では、図 4-1-1-1 に示す光ハブを構成する波長選択スイッチモジュール(WSS)、 可変分散補償モジュール(VDC)、偏波モード分散モジュール(PMDC) をインテグレードした 光スイッチングノードサブシステムの研究開発を進める。

図 4-1-1-1 光ハブの基本構成

今年度は、中間目標である、各要素モジュールを統合制御した状態での動作検証実験に 向け、下記の検討を行った。

(a) 各モジュール目標特性の検討

昨年度検討した各モジュール目標特性一次案に対し、国内全域にわたって End-to-end(メトロ網-コア網-メトロ網)で光レベル接続するためのネットワーク モデルの見直しを行い、各モジュールの詳細仕様をまとめた。特に、昨年度課題と なった高速応答特性、クロストーク等に関して、定量的な検討を行った。

- (b) 光ハブ用モニタ、制御系開発 各モジュールを統合制御するためのモニタ、制御系の開発を進めている。今年度は 特に、経路切替や光パワーレベル調整をモニタ信号に応じて自動で行うための波長 選択スイッチの制御回路の試作を行った。
- (c)光ハブ評価用テストベッド構築 昨年度に引き続き、各モジュールおよびそれらを統合したサブシステムの伝送特性 評価を行うためのテストベッドの構築を行った。特に今年度は、各モジュールの高 速応答の評価系の立ち上げを行った。

4-1-2 各モジュール目標特性検討

昨年度報告書においては、光ハブに対するシステム要件を明確化し、それに基づいて各 モジュール(波長選択スイッチモジュール、可変波長分散モジュール、偏波モード分散モ ジュール)の目標特性の一次案を示した。今年度は、国内全域にわたって End-to-end で光 レベル接続すべくネットワークモデルを拡大し、各モジュール目標特性の詳細について検 討した。

4-1-2-1 ネットワークモデル

本検討で前提としたネットワークモデルを図 4-1-2-1 および図 4-1-2-2 に示す。昨年度 はコア網の伝送距離を最大 300 km として検討したが、今年度は日本全域にわたって End-to-end で光レベル接続するネットワークの実現を目指し、それに応じて各モジュール の目標特性の見直しを行った。図のように、コア網としては、国内全域を接続する最長 2200 kmのメッシュ網を想定した[1-1]。各都市(図中赤丸)には任意波長の経路切替えをする光 ハブを配置し、そこを基点として各都市圏内のメトロコア網へと接続する。メトロコア網 としては、最大 150 km のリング網を想定し、最大 15 段(SDH/SONET 規格を参考)の小ノ ード(分岐挿入のみを行なう小型のノード)を経由すると想定した。

図 4-1-2-1 国内コア網ネット 図 4-1-2-2 コア網 ワークモデル

図 4-1-2-2 コア網およびメトロ網のノード配置

ネットワークパラメータを表 4-1-2-1 に示す。10 Gbit/s 信号に関しては、上記ネットワークモデルの全域をカバーする最大伝送距離 2500 km(メトロコア網 150 km+コア網 2200 km+メトロコア網 150 km)を目標とする。40 Gbit/s 信号に関しては、10 Gbit/s 信号に比べて所要光信号対雑音比が 6 dB 厳しくなり、伝送距離が 1/4 に制限されるため、最大伝送距離を 600 km(メトロコア網 150 km+コア網 300 km+メトロコア網 150 km)とした。

項目			備考		
ビットレー	\vdash	10 Gbit/s	40 Gbit/s		
波長帯		C バンド(1531.9	90 - 1563.05 nm)		
		もしくは L-band(1	573.71 - 1606.60 nm)		
波長間隔		50/100 GHz	200 GHz		
最大波長数		80/40 ch	20 ch		
最大ノー	メトロ網	16 ノード(光ハブ 1,小ノード 15)		SDH/SONET 規格(BLSR) を参考	
ド数	コア網	7ノード	2ノード		
ファイバ種類		SMF/ DSF(L-band)			
伝送距離		最大 2500 km	最大 600 km		
		(コア網: 2200 km、	(コア網: 300 km、		
		メトロ網 150 km×2)	メトロ網 150 km×2)		

表 4-1-2-1 想定したネットワークパラメータ

4-1-2-2 波長選択スイッチモジュールの目標特性

本研究開発課題ではEnd-to-endで光ネットワーク接続する光ハブの実現を目的とする ため、光ハブに適用する波長選択スイッチとしては、波長毎の経路切替え機能をもつこと に加え、光ノード多段透過に耐えられる伝送特性の確保が重要である。波長選択スイッチ モジュールの目標特性検討にあたり、まず、チャネル数拡張を考慮した上での①波長間隔 を検討した。次に、主な伝送劣化要因としての②透過帯域幅、③クロストークの所要特性、 さらに、光スイッチングに要求される④高速応答特性に関して検討を行った。

① 波長間隔、波長数

昨年度検討を行った光ハブに対するシステム要件の一つに、波長数に対する柔軟な拡張 性があった。つまり、初期導入時にはその時点でのトラフィックディマンドに応じ、少な い波長数に対応した低コスト、小型の光ハブを適用し、トラフィックディマンド増大に応 じて、インサービスで各構成モジュールを追加できる構成が望ましい。図 4-1-2-3 に示す 下記の3つのノード構成方法に関して、比較検討を行った。

- (a) 初期導入時には 50 GHz/100 GHz インターリーバを挿入した上で、100 GHz 間隔(偶数 グリッド) 40 波用波長選択スイッチを配置し、さらに波長数要求が 40 波長以上に増 大した場合、奇数グリッド 100 GHz 間隔の波長選択スイッチを追加する。
- (b) 初期から 80 波用の 50 GHz 間隔波長選択スイッチを導入する方法
- (c) 40 波用の 100 GHz 間隔波長選択スイッチをのみを導入する方法(最大波長数が 40 波 に制限される。)

図 4-1-2-4 に各構成間の光ハブのサイズ、コストの比較を示す。実際の市場要求として は 40 波以下の比率が高く、そのような状況下で、構成(b) は少数波長時にも最大波長数と 同じサイズ、コストが必要となるため、拡張性の点からデメリットが大きい。そのため、 まず、最大波長数 40 波以下のシステムでは、100 GHz 間隔波長選択スイッチを適用すべき と考える(構成(c))。さらに、40 波以上に拡張する必要のあるシステムへの対応としては、 100 GHz 用波長選択スイッチと 50 GHz/ 100 GHz インターリーバを組み合わせることを想 定する(構成(a))。

図 4-1-2-3 波長数拡張に関する波長選択スイッチ構成案

図 4-1-2-4 各波長選択スイッチ構成のノードコスト、サイス比較 (IL: インターリーバ)

② 透過帯域幅

表 4-1-2-1 で想定したネットワークモデルでは、多段の光モジュール(波長選択スイッチ、 可変分散補償モジュール)を透過するため、それに耐えうる透過帯域幅の確保が重要である。 今回、モジュール多段透過による波形劣化を評価する伝送シミュレーションを行った。図 4-1-2-5 に、10 Gbit/s(100 GHz 間隔)および 40 Gbit/s(200 GHz 間隔)伝送特性の各モジュ ール透過帯域幅依存性のシミュレーション結果を、表 4-1-2-2 に計算で想定したモジュー ル条件と所要帯域幅計算結果を示す。なお、4-2, 4-3 章で述べる開発中の各モジュールの 現状特性を考慮し、波長選択スイッチおよび可変分散補償モジュールの透過特性形状に関 して、各々3次および2次のガウシアンを想定した。

特に、許容ペナルティを 0.1 dB としたとき、10 Gbit/s 信号での波長選択スイッチモジ ュールの透過帯域幅としては、60 GHz 以上(3dB-down, 全幅)が要求される。なお、最大 80 チャネル(波長間隔 50 GHz)のシステムへの対応が必要となる場合、ノード多段透過時には、 各モジュールでなく 50 GHz/100 GHz インターリーバの透過帯域幅が伝送制限要因になり、 伝送距離が縮小する(インターリーバ 36 段(18 ノード)で1 dB ペナルティ)。

図 4-1-2-5 伝送特性の各モジュール透過帯域幅依存性

項目			備考	
ビットレート		波長選択スイッチ(WSS)	可変分散補償モジュール	
最大モジュー	10 Gbit/s	44 台	9台	- 光ハブ:WSS 2 台+VDC 1 台
N透過段数	40 Gbit/s	30 台	2 台	- 小ノード局: WSS 1 台
透過帯域形	伏	3 rd —order Gaussian	2 nd —order Gaussian	
所要透過	10 Gbit/s	60 GHz	40 GHz	3dB down, 全幅
帯域幅	40 Gbit/s	140 GHz	95 GHz	許容ペナルティ 0.1 dB

表 4-1-2-2 想定したモジュール透過条件と所要帯域幅計算結果

(偏波モード分散補償モジュールは、帯域制限を生じないため表から除外)

③ クロストーク (コヒーレントクロストーク)

コヒーレントクロストークは、合分波デバイスのアイソレーション不足や迷光等の理由 によって、一部の信号が複数の経路を経て再び信号光に重畳される現象(MPI = Multi-pass interference)である。同一波長によるクロストークであるために、主信号の間で光干渉に よる雑音を発生させる。本検討で想定したネットワークモデルのように、多数の光ノード が連結する場合、複数の波長選択スイッチを透過するごとに、各波長選択スイッチで発生 するコヒーレントクロストークが累積し、信号光の伝送特性をさらに劣化させる。

今回、コヒーレントクロストーク量とペナルティの関係をシミュレーションおよび実験 で評価するとともに、波長選択スイッチが多段接続された場合のクロストークの累積効果 に関してシミュレーション検討を行った。図 4-1-2-6 に示すように、実験においては、可 変アッテネータ(VATT)を用いてクロストーク量(信号光パワーとクロストーク光パワーの 比率)を調節し、ファイバ伝送時に相当する光信号対雑音比(OSNR)になるよう ASE を付加し た。

図 4-1-2-7 に、各波長選択スイッチの多段接続数における、波長選択スイッチ1 台あた りで発生するコヒーレントクロストークとQペナルティを示す。多段接続前(1 段)にお けるクロストーク量対ペナルティの関係は、実測(プロット)とシミュレーション(曲線) の間でよく一致している。多段接続時の影響に関して、今回想定しているネットワークモ デルでは、表 4-1-2-2 に示したように、最大 44 台の波長選択スイッチを透過することにな る。許容ペナルティを1 dBとした場合、シミュレーション結果より、波長選択スイッチ1 台あたりに許容されるコヒーレントクロストークは-44 dB以下となる。

図 4-1-2-7 クロストーク劣化評価結果

④ 応答速度

本テーマで提案している光ハブを用いたシステムの高速応答特性としては、「ネットワ ーク全体として 50 ms 以下でのサービス復旧」を目標としている。高速応答特性を決める 要因としては、高速プロテクション、オンデマンドでの伝送経路切替が考えられる。

まず、光ハブを用いて接続された複数ネットワーク間の高速プロテクションへの対応を 考える。従来の単一リング伝送路網中心のメトロシステムにおいては、OUPSR (Optical Unidirectional Path Switched Ring)、OSPPR (Optical Shared Path Protection Ring) といった光プロテクション方式を採用し、光ファイバ断障害時の高速サービス復旧

(SONET/SDH 規格では 50 msec 以内)を実現してきた[1-2, 1-3]。今回、光ハブを用いて 複数リング間を接続した光ネットワークへの同プロテクションの応用について検討した。

図 4-1-2-8 に、光ハブを用いて2つのリングを接続し、OUPSR プロテクションを行な うための光ネットワーク構成を示す。OUPSR においては、各リング内でお互いに逆回りの 現用回線と予備回線を1対1で用意し、トランスポンダからの送信光信号を光カプラ等で 分岐して、現用回線と同一の信号を予備回線にも伝送する。光ハブにおいては、2つのリ ング間での現用回線同士、予備回線同士を波長選択スイッチで接続する。よって、リング Aから送出された同一の信号が、現用、予備回線を介して隣接リングBの受信端に到達す るために、現用信号が障害で切断された場合でも、受信トランスポンダ(a)内蔵のスイッチ 切替のみで予備信号に切り替えることができる。この場合、障害発生時に光ハブでは切替 動作を行なわないため、波長選択スイッチには高速応答は要求されない。

図 4-1-2-8 光ハブを用いた複数リング間での OUSPR プロテクション

一方、図 4-1-2-9 に、2 リング接続で、OSPPR プロテクションを行なうためのネット ワーク構成を示す。OSPPR プロテクションは、予備専用の回線を設けずに、同一波長で別 の情報の光信号を上りと下りの2回線に収容することで、回線の使用効率を高めることを 特徴とする。障害が発生して上り側の現用回線からの光信号が切断された場合は、送信端 のスイッチ(b)で切替を行って、光信号を下り側の回線に送出する(障害発生前に下り側の 回線で流していた優先度の低い信号は切断)。この場合、障害が起きたリングA内のみで閉 じたプロテクションを行ない、隣接リングBに影響を与えないようにするため、光ハブに おける波長選択スイッチは切替動作を行う。よって、波長選択スイッチには高速応答が要 求される。

図 4-1-2-9 光ハブを用いた複数リング間での OUPPR プロテクション

図 4-1-2-10 に、OSPPR における障害復旧時間検討のネットワークモデルを、図 4-1-2-11 に切替制御シーケンスを示す。SONET/SDH レイヤでの Bellcore 規格に準じ、伝送距離とし ては最大 1200 km、ノード数としては最大 1 6 ノードのネットワークでのプロテクション を考えた。

SF: Signal Failure BR: Bridging (送信端) RR: Reverse Request SW: Switching (受信端)

図 4-1-2-10 障害復旧ネットワークモデル

図 4-1-2-11 切替制御シーケンス

下記計算に示す各プロセスへの所要時間の割振りを行った結果、波長選択スイッチの所要応答速度を3 msec以下とした。

・障害検出時間 t_d = 2 ms
 ・Tp = ファイバ伝搬時間+中継ノード遅延時間

 = (1200×10³ m) ÷ (2 x 10⁸ m/s) + 250 µs ×16 node = 10 ms
 ・全体としての復旧時間 : t_d + 3Ts + 3 Tp < 50 ms (目標値)

 ⇒ 1 ノード当たりの切替時間: Ts < 6 ms
 ⇒ 波長選択スイッチモジュールの切替時間 < 3 ms (モニタ検出時間を 3 ms と想定)

また、様々なトラヒックを効率よくネットワークに収容し、波長貸し等の新規サービス へ対応するために、波長毎のオンデマンドでの信号経路切替えが必要になると考えられる。 本テーマで開発を行っている光ハブに関しては、当面必要とされるストリーム信号に対す る信号経路切替を想定している。その場合、オペレーションシステムからの切替制御信号 に応じて、所望の伝送パス上の複数の光ハブの経路切替を同時に行うことで、上記プロテ クション要求に応じた波長選択スイッチ切替時間(<3 ms)が実現できれば、光信号の瞬断時 間は充分 50 ms 以下とすることが可能である。

但し、現在 GMPLS [1-4]に代表されるような光レベルでのネットワークマネージメント 技術の研究開発が進められており、今後制御時間も含めたネットワーク応答速度の高速化 が求められる場合に、光スイッチへの要求速度がさらに厳しくなる可能性があり検討課題 である。また、フォトニックネットワークに収容するトラヒックの効率をさらに高めるた めに、バースト的に発生する IP パケットのかたまり毎に異なる波長を割り当てる光バース ト転送技術、IP パケット毎に異なる波長を割り当てる光パケット転送技術の研究開発も行 われており、そのような次世代技術に対応するためには、サブミリ秒~ナノ秒オーダーの スイッチの高速応答が必要になってくる可能性がある。

		経路切替ノード	波長選択スイッチの応答速	備考	
			度要求		
(a) プ ロテクション	OUPSR	受信端のみ切替	遅くて可	△ 常に予備パスが必要	
		(光ハブは切替無し)			
	OSPPR	光ハブ、送受信端とも	<3 ms	○ 予備パス不要で、波長を有効活用	
		に切替			
(b) オンデ゛マント゛ ⁻	での伝	光ハブ、送受信端とも	<3 ms	今後の高速ネットワークマネージメントの要求	
送経路切替		に切替	(ストリーム信号転送)	(GMPLS,光バースト、光パケット伝送等)に	
				従って要求が厳しくなる可能性あり	

表 4-1-2-3 波長選択スイッチ対する高速応答要求

⑤ 波長選択スイッチモジュール目標特性

表 4-1-2-4 に、昨年度のおよび以上①~④の検討結果による波長選択スイッチモジュー ルの目標特性をまとめる。

項目	仕相	備考	
	10 Gbit/s 用	40 Gbit/s 用	
波長帯	Cバンドもし	くはL-band	
波長間隔	50 /100 GHz	200 GHz	
波長数	80 /40 ch	20 ch	
入出力ポート数	(a) 入力: 1、出力: N (N	は4以上)	
	(b)入力:N、出力:1 (N	は4以上)	
透過帯域(3 dB down、全幅)	>60 GHz	> 140 GHz	
クロストーク	リニアクロストーク: < -25 dB		
	コヒーレントクロストー	·곗: <-44 dB	
挿入損失	< 6 dB		
光パワー可変範囲	> 6	dB	
群遅延リップル	<+/-2.7 ps	<+/-0.9 ps	
応答速度	< 3 ms (制)	御時間含む)	

表 4-1-2-4 波長選択スイッチモジュール 目標特性

4-1-2-3 可変波長分散補償モジュールの目標特性

可変波長分散補償モジュールの仕様項目としては、波長多重信号に対して様々な伝送路 条件でも高い分散補償精度を確保するための①波長分散スロープ可変範囲・ステップ、一 次波長分散可変範囲・ステップ、波形劣化を防ぐための②群遅延リップルが重要である。

① 波長分散スロープ可変範囲・ステップ、一次波長分散可変範囲・ステップ

伝送距離が長くなるほど、経路切替に伴う伝送距離変化、伝送路ファイバ・DCFの波長 分散係数・分散スロープの製造ばらつき、伝送路ファイバの温度変動による零分散波長の シフト等に起因して分散補償誤差が累積し、伝送波形劣化が課題となる。今回、図 4-1-2-1 に示した国内全域をカバーするネットワークモデル(最長 2500 km)において、これらの分 散補償誤差を補償するため、可変分散補償モジュールの可変分散補償量、可変ステップ(一 次分散および分散スロープ)の所要量を検討した。同図に示すように、可変分散補償モジュ ール(VDC)は、コア網とメトロ網をつなぐ光ハブ内へ配置すれば、比較的短距離のメトロ網 内での配置は不要と考える。伝送路としては、波長分散係数の大きい標準のシングルモー ドファイバを想定した。

図 4-1-2-12 に、可変波長分散補償モジュールを適用する前後の分散マップを示す。可変 分散補償モジュール適用により、受信端での残留分散差が、2510 ps/nm から 82 ps/nm と

効果的に低減される。

想定している伝送路および DCF の波長分散及び波長分散スロープばらつき量、および伝送信号の波長分散トレランスより、可変分散補償モジュールに要求される分散補償特性を表4-1-2-5の通り求めた。40 Gbit/s 伝送では、波長分散トレランスが 10 Gbit/s 伝送の1/16 と厳しくなるため、分散補償量の可変ステップを小さくする必要がある。

	4/4/4 10 1114/2	2 V V V V V V V V V V V V V V V V V V V	
	10 Gbit/s	40 Gbit/s	備考
分散スロープ可変範囲	$-8\sim+8$ ps/nm ²	$-8\sim+8$ ps/nm ²	・一次分散と独立に可変
分散スロープ可変ステップ	< 4 ps/nm ²	< 0.3 ps/nm ²	・個別チャネル補償型の場合は本
			項目は規定不要
一次波長分散可変範囲	-400~+400 ps/nm	-400~+400 ps/nm	
一次波長分散可変ステップ	< 80 ps/nm	< 5 ps/nm	

表 4-1-2-5 可変分散補償モジュール 分散補償量目標値

②群遅延リップル

昨年度報告書においては、群遅延リップルの形状を正弦波と仮定し、群遅延リップルに よる伝送波形劣化のシミュレーション結果から、群遅延リップルの目標特性を求めた。 今回、国内全域にネットワークサイズを拡大したことによりモジュール透過段数が増大する ため、群遅延リップルの目標値の見直しを行った。

昨年の伝送波形シミュレーション結果によると、システム全体で許容される群遅延リッ プルの振幅は、10 Gbit/s および 40 Gbit/s 信号光に対してそれぞれ+/-20 ps および+/-5 ps である。多段接続する各モジュールを透過する場合、群遅延リップルの現れ方(振幅、周 期、位相)がノード毎にランダムに異なるため、リップル振幅は統計的に加算される。そ のため、1つのモジュール(波長選択スイッチモジュール、可変分散補償モジュール)当 たりの許容リップル振幅は下記のようになる。

 $[10 \text{ Gbit/s}] +/-20 \text{ ps} \div \sqrt{(44+9)} = +/-2.7 \text{ ps}$

 $[40 \text{ Gbit/s}] +/-5 \text{ ps} \div \sqrt{(30+2)} = +/-0.9 \text{ ps}$

③ 可変分散補償モジュール目標特性

表 4-1-2-6 に、昨年度および上記①~②の検討結果による可変波長分散補償モジュールの目標特性をまとめる。

項目	仕様	<i>美</i> 值	備考
	10 Gbit/s用	40 Gbit/s用	
波長帯	Cバンドもし	くはL-band	
波長間隔	50 / 100 GHz	200 GHz	
波長数	80/40 ch	20 ch	
分散スロープ可変範囲	-8 \sim +8 ps/nm ²	-8 \sim +8 ps/nm ²	・一次分散と独立に可変
分散スロープ可変ステップ	< 4 ps/nm ²	< 0.3 ps/nm ²	・個別チャネル補償型の場合は本
			項目は規定不要
一次波長分散可変範囲	-400 \sim +400 ps/nm	-400 \sim +400 ps/nm	
一次波長分散可変ステップ	< 80 ps/nm	< 5 ps/nm	
透過帯域(3dB down, 全幅)	> 40 GHz	> 95 GHz	4-1-2-2③参照
挿入損失	< 10 dB	< 10 dB	
群遅延リップル	<+/-2.7 ps	<+/-0.9 ps	
応答速度	< 3 ms (制)	御時間含む)	波長選択スイッチと同時制御

表 4-1-2-6 可変波長分散補償モジュール 目標特性

4-1-2-4 偏波モード分散補償モジュールの目標特性

偏波モード分散モジュールは、偏波モード分散トレランスの厳しい 40 Gbit/s 伝送にお いて必要になる。今年度は、特に偏波変動による偏波モード分散モジュールの応答速度に 関して、実測に基づく検討を行った。

応答速度

偏波モード分散補償モジュールの高速応答に関しては、伝送経路切替への応答のみなら ず、高速偏波変動への追従性が要求される。高速偏波変動は、伝送システムが配置された 局舎で、作業員がファイバの脱着作業の際にファイバコードに接触した場合に、最も高速 の偏波変動が起きると考えられる。そこで、偏波モード分散補償モジュールの高速応答評 価系を構築し、ファイバタッチによる偏波変動速度を測定した。

図 4-1-2-13 に、偏波モード分散補償モジュールの高速応答評価系を示す。偏波モード 補償モジュールの前段に高速偏波スクランブラと PMD エミュレータ[1-5]を配置し、高速偏 波変動を擬似的に作り出す。今回、ファイバタッチと、市販の高速偏波スクランブラ(アジ レント社製 11896A)の偏波変動速度を測定した。図に示すように、波長可変光源(TSL)から の光をファイバタッチや偏波スクランブラによって偏波を変化させ、ADC とパソコンを用 いて、1/1000 秒ごとに偏光パラメータ (SOP)を収集する。SOP の変化から偏波変動の速 度測定を行った。さらに、偏波スクランブラの代わりに 1m のファイバを振ったり(fiber shake)、短いファイバを用いて直径約 6 センチの円を作りそれを弾いたりして(fiber touch)、偏波変動の測定を行った。

実測による偏波変動角度対発生確率のヒストグラムの図 4-1-2-14 に、偏波変動速度の平 均値を表 4-1-2-7 に示す。図中の scan1、4、8 は偏波スクランブラのスキャンレート設定 を示す。ファイバタッチ等、ファイバに力が加わった場合、1 秒間にポアンカレ球を 4~5 回まわる位の偏波変動が生じることが分かった(ほぼスキャンレート 4 に相当)。よって、 経路切替に追随するための速度が実現できれば、ほぼ偏波変動への追従も可能と考えられ るため、偏波モード分散モジュールの応答速度の目標値を1 msec 以下とした。

図 4-1-2-14 偏波変動速度の度数分布

② 偏波モード分散モジュール目標特性

表 4-1-2-8 に、昨年度および①の検討結果による偏波モード分散補償モジュールの目標 特性をまとめる。

<u>1</u>		
項目	仕様値	備考
	40 Gbit/s 用	
波長帯	CバンドもしくはL-band	
波長間隔	200 GHz	
波長数	20 ch	
DGD 補償範囲	0 ~ 28 ps	
挿入損失	< 10 dB	
PDL	< 0.3 dB	
応答速度	1 ms	

	表 4-1-2-8	偏波モー	ド分散補償モジュール	目標特性
--	-----------	------	------------	------

4-1-3 光ハブ用モニタ、制御系開発

光ハブ用モニタ・制御系開発として、今年度は特に、波長選択スイッチモジュールの自 動フィードバック制御方式検討・動作確認のための制御回路の試作を行った。波長選択ス イッチ(WSS)自動フィードバック系の構成を図 4-1-3-1 に、試作した WSS 制御回路の写真を 図 4-1-3-2 に示す。WSS 自動フィードバック系は、任意波長の合分波及び光強度調整を行 う波長選択スイッチ、波長毎の光強度を測定する光チャンネルモニタ(OCM: Optical Channel Monitor)、光信号の WSS 入力ポートを識別する Photo Diode Array (PD Array) から成る光モニタ系、光モニタ系の情報を基に波長選択スイッチの制御を行う今回試作の 制御回路から構成されている。また、今回は、動作確認のため、RS-232 ケーブルを介しパ ソコンを用いて制御ボードのコントロールを行った。試作した WSS 制御回路は、波長選択 スイッチにおける波長毎の光強度調整を行うため、まず、OCM 及び PD-Array から、DPRAM インターフェースを介して FPGA に光強度値を取得する。その際、PD-Array で受けた電流 信号は、電圧信号に変換し、ローパスフィルタでノイズ除去を行い、A/D コンバータでデ ジタル信号に変換する。FPGA では、OCM で得られた光強度と所要の光強度との差分を波長 毎に計算し、DPRAM インターフェースを介して波長選択スイッチを制御する。今後、開発した波長選択スイッチを搭載して動作確認を行なう。

図 4-1-3-1 WSS 自動フィードバック制御系構成

図 4-1-3-2 WSS 制御回路試作品写真

4-1-4 光ハブ評価用テストベッド構築

光ハブ評価用テストベッド構築として、今年度は特に、各光モジュールの高速応答評価 系の立ち上げを行った。本研究テーマでは、マイクロ秒~ミリ秒オーダーの高速動作で、 経路切替、波形劣化補償を行う光ハブの実現を目指しており、その高速応答特性の評価が 重要である。従来、光スイッチの高速応答特性評価として、一般的に光パワーの強度変化 をオシロスコープで観測する方法が用いられているが、必ずしも光信号品質の時間変化を 評価していない。さらに、可変波長分散補償モジュールの応答に関しては光パワーの変動 を伴わないため、同方法が適用できない。そこで、今回、符号誤り数を利用することで、 ダイレクトに各モジュール高速応答による信号品質変化を評価する実験系の構築を行った。 (なお、図 4-1-2-13 に示したように、偏波変動に対する偏波モード分散補償モジュールの

高速応答評価系の構築も別途行った。)

高速応答評価系を図 4-1-4-1 に示す。被評価光モジュール (DUT)を模擬するために、今回 は高速動作可能な市販の1 波用光スイッチを配置した。光信号を受信後、誤り検出器のダ イレクト出力機能からの信号をオシロスコープを用いて記録した。ダイレクト出力機能は、 2.99 ns 周期で、エラー有無に応じて-1 V(エラー有)、0 V(エラー無)の電圧信号を出力す る。また、比較のために、従来方法である光パワーレベルの高速変化も同時に測定した。

オシロスコープによる測定例を図 4-1-4-2 に示す。光スイッチ切替後、光レベルが低下 し、ダイレクト出力信号がエラー無(0V)からエラー有(-1V)に変化していることが確認で きる。さらに、オシロスコープに記録した測定データを解析した結果を図 4-1-4-3 に示す (縦軸は 200 ns 当りのエラー数)。エラーカウント評価系による応答速度は約 120 µ s とな り、従来の光レベルモニタの約 140 µ s とほぼ同等の結果を得た。

以上より、エラーカウント評価により、従来の光パワーレベルモニタでは行うことので きなかった光信号品質の高速変化の検出が可能であることを確認した。

図 4-1-4-1 エラーカウント評価系

4-1-5 まとめと今後の課題

各モジュール機能をインテグレードした光スイッチングノードサブシステムの実現に 向け、今年度は昨年度に引き続き、各モジュール目標特性の明確化と、各モジュールのモ ニタ・制御系の開発、伝送テストベッド評価系構築の立ち上げを行った。

各モジュール目標特性検討に関しては、平成15年度に提示した目標特性一次案に加え、 各モジュールの詳細仕様を明確化することで、各モジュール開発を促進した。特に、国内 全域にわたって End-to-end で光レベル接続するネットワークモデルを想定し、各モジュー ルに対する要求特性(特に透過帯域幅、応答速度)の見直しを行った。

また、各モジュールのモニタ・制御系の開発に関して、今年度は、波長選択スイッチモジュールの制御系の試作を行った。

さらに、各光モジュールのシステム基本特性評価のため、40~80 km×40 スパン以上伝 送可能な伝送テストベッド実験系の構築を行った。今年度は特に、各モジュールおよび光 ハブのマイクロ秒~ミリ秒の高速応答特性を評価する系の構築を行った。

今後は下記の検討を進めていく。

①各モジュール伝送実験評価

各機能モジュールの伝送特性評価により、今年度提示した各モジュール仕様項目の影響を定量的に評価し、各モジュール開発へのフィードバックを行う。

②統合モニタ・制御系開発

各光モジュールごとのモニタ・制御方式を確立し、それら連係動作させるためのアル ゴリズムの検討を行う。

③機能統合形態検討

各光モジュール開発における特性確保の状況を考慮した上で、それらを統合する光モジュールの形態を検討する。

参考文献

[1-1] 渡辺 篤、岡本 聡、「オプティカルパスによる IP バックボーンネットワーク構成」、 1999 年電子情報通信学会総合大会 B-10-118.

[1-2] 矢島昇、友藤博朗、寺井昇、「富士通 FLASHWAVE 7500」、OPTRONICS、オプトロニク ス社、No. 248 (2002 年 8 月)、pp. 158-161.

[1-3] ITU-T Recommendation G.841, Types and characteristics of SDH networks protection architecture

[1-4] Satoru Okamoto, Tomohiro Otani, Wataru Imajuku, Daisaku Shimazaki, Michiaki Hayashi, Kenichi Ogaki, M. Miyazawa, Itaru Nishioka, Mikako Nanba, Kazumasa Morita, Shinya Kano, Syoichiro Seno, Kazuhiko Sagara, Nahoko Arai, Hideki Ohtsuki,

"Nationwide GMPLS Field Trial Using Different Types (MPLS/TDM/Lambda) of Switching Capable Equipment from Multiple Vendors", OFC 2005, PDP40, Anaheim, 2005 [1-5] Wenyu Zhao, Lan Wang, Hongxiang Wang, Yuefeng Ji, Jens C. Rasmussen, Hiroki Ooi, George Ishikawa, and Shinya Hasuo, "Crystal-Optical Higher-Order PMD-Emulator for 40 Gbit/s Systems", OECC/IOOC 2001, ME-3, p. 45.

4-2 波長選択スイッチモジュールの研究開発

4-2-1 波長選択スイッチモジュール開発の概要

波長選択スイッチは波長分割多重された光(WDM 光)の経路を、波長成分ごとに切り替え る機能モジュールであり、提案する光スイッチングノードの経路切り替え部に適用する。 図 4-2-1-1 に示す機能ブロック図のように、WDM 光を分波する部分、分波した光の径路を 切り替える光スイッチ部、分波した光を再び合波する部分と、光スイッチ部の制御部から 構成される。16 年度は中間目標であるモジュール試作の実現に向け、15 年度決定の機能・ 仕様を基にし、基本設計と部材の絞込み、原理試作による確認をおこなった。

図 4-2-1-1 波長選択スイッチの機能ブロック

4-2-1-1 システム要求の整理

課題(ア)のサブシステムの検討から波長選択スイッチへ要求する機能・特性を下記に絞り込み、それらを実現すべく開発を進めている。

・機能: $1 \times N(N \ge 4)$ の光スイッチ、光パワーレベル調整機能

光ハブに必要とされる所要方路数の検討結果から、4 方路以上をカバーする光ハブ が必要となることが判明し、1×N(N≧4)の波長選択スイッチを基本要素とした。ま た、様々な径路を通ってくる WDM 光の光パワーレベルを均一化するため、出力ファイ バへの光結合効率を調整する光パワーレベル調整機能を集積化する事とした。

• 特性

スイッチノードは多段で接続される事が前提であり、そのコア部となる波長選択ス イッチには多段化に耐えうる特性が要求される。特に、挿入損失、透過帯域、動作速 度は通過するノードが増加するたびに累積していくものであり、厳しい特性が要求さ れる。以上の機能・特性をまとめたものを表 4-2-1-1 に示す。これら項目で、特に課 題が大きいと考えている多ポート化、高速化、透過帯域の拡大を中心に波長選択スイ ッチモジュールの構成検討をおこなった結果を次節から説明する。

項目	仕様値		
	10 Gbit/s用	40 Gbit/s用	
波長帯	Cバンド(1531.90) - 1563.05 nm)	
	もしくは L-band(157	73.71 - 1606.60 nm)	
波長間隔	50 /100 GHz	200 GHz	
波長数	80 /40 ch	20 ch	
入出力ポート数	(a) 入力: 1、出力: N (Nは4以上)		
	(b)入力: N、出力: 1(ì	Nは4以上)	
透過帯域(3dB down、全幅)	>60 GHz	> 140 GHz	
クロストーク	リニアクロストーク : < -25 dB		
	コヒーレントクロストーク	⊅: <-44dB	
挿入損失	< 6 dB		
光パワー可変範囲	> 6 dB		
群遅延リップル	<+/-2.7 ps	<+/-0.9 ps	
応答速度	< 3ms(制徒	1時間含む)	

表 4-2-1-1 波長選択スイッチモジュール 主要目標特性

4-2-1-2 多ポート化に向けた課題

今年度は特に波長選択スイッチの入出力のポート数拡大(1×N、N×1; N≥4)を重要開 発項目とし検討を進めた。図 4-2-1-2 に示す多ポート化時の構成に対し、以下に示す課題 を抽出し、波長選択スイッチを構成する各部について、課題解決のための検討をおこなっ た。

①ポート毎に必要となる分光素子の数の削減(コスト削減)
 ②狭ポート間ピッチで、低クロストークの光学系(小型化)
 ③光スイッチ光学系で切り替え可能なポート数の拡大
 ④ポートを横断する際のダイナミッククロストークの低減
 ⑤ポート数の増加により難易度があがった光実装の簡易化

分波部・合波部を構成する分光光学系は、高波長分解能力と低損失、低PDLを両立す る分光素子の選択と、低ポート間クロストークを実現する分光光学系の設計技術を開発し た。スイッチ光学系は、アナログ動作可能なスイッチングデバイスとして、

MEMS (Microelectro Mechanical System) 用いた可動ミラーを選択し、ポート数の拡大に向 けてミラーの振り角度の拡大と、横断時のダイナミッククロストークを低減するためのシ ャッタ機能の集積化の開発をおこなった。以上二つの光学系のモジュール化に向け、小型・ 低損失を実現するための、光学解析/設計ツールを開発し、実装技術・制御技術の基本検 討をおこなった。詳細を次節以降に示す。

図 4-2-1-2 多ポート化時のスイッチ構成

4-2-1-3 切り替えの高速化に向けた課題

高速化には光スイッチ部の高速な動作が要求され、MEMS ミラーの高速応答と、高速な制 御回路の実現が課題である。ミラーの高速応答は、共振周波数の高い MEMS の検討を、制御 回路の高速化はインターフェースの高速化の検討をおこなった。

4-2-1-4 波長透過帯域の拡大に向けた課題

図 4-2-1-3 に示すよう、透過帯域はビームのサイズ(径)と MEMS ミラーのサイズで決ま り、昨年度の検討で透過帯域の拡大にはミラー比率(ミラー幅/ミラーピッチ)の大きい MEMS ミラーが必要とし、新規構造の MEMS 開発を開始した。今年度はさらに光学設計・実 装面から検討をおこなう。これに部材の精度、実装精度、温度変動等によるビームサイズ・ 位置のずれを考慮してミラーに当たるビーム径を決定する。

図 4-2-1-3 透過帯域の決定要因

4-2-2 小型分光光学系の開発

4-2-2-1 分光光学系の構成と要求、分光素子の選定

分光光学系は図 4-2-2-1 に示すように WDM 光を分解する分光素子と、各成分の光を平行 にする集光レンズとから構成される。サイズは分光素子とレンズの距離 fsp により決まり、 小型化にはこの距離の縮小、つまり線分散能力(d θ / d λ)の大きい分光素子の開発が必要 となる。15 年度の検討では線分散量の大きい分光素子として空間型回折格子と、導波路型 回折格子を選択し、試作・評価・課題抽出をおこなった。それぞれの回折格子を用いた波 長選択スイッチの構成例を図 4-2-2-2 に示す。今年度はさらに最重要項目である多ポート 化をキーワードに、この2種の回折格子を比較し、適用する候補を決定した。

(a) 空間型回折格子を用いたタイフ[°] (b) 導波路型回折格子を用いたタイフ[°] 図 4-2-2-2 多ポート波長選択スイッチの構成

前述したポート数拡大時の課題である必要な分光光学系の数の削減、狭ポート間ピッチ で低クロストークの光学系、光実装の簡易化について、比較検討をおこなった。分光素子 数の削減は各ポートでの共通化の可能性検討をおこない、サイズは大きくなるが1素子で 全ポートをカバーできる空間型の回折格子が、N+1個の分光素子を必要とする導波路型よ り優れているとの結果が得られた。また、導波路型の多ポート化は、導波路型分光素子を 多段に積み重ねていく構成となり、数 cm オーダの素子の高精度な6 軸調整が必須となる。 トレランス検討の結果から、分光した光の出射角のポート間バラツキを 0.001°のオーダ であわせる必要がある事が判明し、導波路型採用の上での大きな判断ポイントとした。特 性面では、PDL (偏波依存損失)を含んだ損失を中心に比較をおこなったが、特性面でも空間 型開設格子の方が有利との結果が得られた。

以上のポイントを中心に空間型回折格子と、導波路型回折格子を比較した結果、本テーマでの波長選択スイッチは空間型回折格子を分光素子とした分光光学系を採用する事とした。次節で空間型回折格子に絞り込んだ詳細の検討をおこなう。

衣 4-2-2-1 万九茶丁の比較				
	回折格子型	導波路型		
必要な分光素子数	1	N+1		
実装性	0	×(導波路の6軸調整が必須)		
挿入損失	1dB	3. 6dB		
偏波依存損失	0.5dB	0. 5dB		

表 4-2-2-1 分光素子の比較

4-2-2-2 回折格子の選定(各回折格子の調査・比較と候補の絞り込み)

波長選択スイッチモジュールに採用する分光素子を空間型回折格子に絞込み、さらに詳 細の調査をおこなった。以下に示す回折格子について、波長選択スイッチへの適用性を調 査した。 [1]反射型

・Blaze 型: 溝の断面形状を鋸歯状に加工し、入射光と回折光が鏡面反射の関係となる ように、溝の角度を形成することにより、特定次数に回折光パワーが集中させる回折格子。 高い回折効率が得られるため、現状最も一般的に使用されている。

・Hologram型: 光の干渉による干渉縞を感光剤に記録し、エッチングにより正弦波状の 断面形状を得るタイプの回折格子。ブレーズ型と比較して、シャープな加工ができないた め一般的に効率は劣るが、加工精度が高く迷光が少なくクロストーク特性に優れる。

・Echelle型: 幅が広く浅い溝を持つ構成であり、45度以上の入射角で溝の側面に対してほぼ垂直に入射されるように設計された回折格子。比較的高い回折次数(数十以上)で用いる。高線分散時のブレーズ角度は65度近辺となり、加工に課題。

・Grism型: 回折格子にプリズムを貼り合わせた構成であり、分散角度を大きくとれる。

[2]透過型

・VPG型: ホログラムの技術を用いて製作される透過型回折格子で、ゲル状の媒質の屈 折率に周期的な変動を与えることにより位相差を産み出すもの。VPGを挟んだ入射角と出 射角が一致する場合(Bragg 条件)に高効率の状態となる。

E-VPG型: VPGでは、溝本数 600本/mm以上の空間周波数では、一般に高回折効率と低
 PDLを両立させることができない。E-VPGは同課題を解消すべく開発された回折格子であり、
 溝本数 940本/mm で約 95%の回折効率、0.1dB 程度の PDL を実現している。

・Grism型: 透過型回折格子をプリズムで挟み、分散角を増大させる構成。

以上の回折格子について、高波長分解能力、低損失、低 PDL をキーワードにして、候補の絞り込みを進めた。その結果を表 4-2-2-2 に示す。波長分解能力を大きくできる領域では、入射角と出射角がほぼ同一となり、その切り分けに大きな課題が発生していたが、この問題の解決には、透過型の回折格子の適用が最適と判断し、その中でも高波長分解のための設計自由度が高い VPG (Volume Phase Grating)型を第一候補とした。その評価結果を図 4-2-2-3 に示す。損失、PDL 共に優れた値を得られている。

		構成	分散能力	回折損失	PDL	判定	条件、備考
反射型	Blaze型		0.04deg/nm	0.9dB	< 0.2dB	Δ	溝本数:600本/mm,1次,Littrow配置
			0.08deg/nm	1.2dB	< 0.2dB	Δ	溝本数:300本/mm,3次,Littrow配置
	Hologram型		0.12deg/nm	0.6dB	< 0.25dB	0	溝本数:1100本/mm,1次,Littrow配置
	Echelle型	n vy	0.15deg/nm	1.6dB	< 0.3dB	Δ	溝本数:52.67本/mm,22次,Littrow配置
	Grism型		0.36deg/nm	0.9dB (S偏光)	> 10dB	×	溝本数: 1800本/mm,Littrow配置, 回折損失とPDLがトレードオフ (低PDLのGratingを用いれば回折損失増)
透過型	VPG型		0.04deg/nm	< 0.3dB (S偏光)	< 0.8dB	0	溝本数:600本/mm,1次,Bragg条件 回折損失とPDLがトレードオフ
			0.08deg/nm	< 0.3dB (S偏光)	< 5dB	×	溝本数:900本/mm,1次,Bragg条件 回折損失とPDLがトレードオフ
	EVPG型 (Dickson型)		0.08deg/nm	< 0.3dB	< 0.25dB	0	溝本数:940本/mm, Bragg条件
			0.18deg/nm	< 0.7dB	<0.3dB	Ø	溝本数:1200本/mm, Bragg条件
	Grism型		0.3deg/nm	6.5dB	< 0.3dB	×	溝本数: 1852本/mm, Bragg条件 PDLを低減する場合、回折損失が増加
		Section of the sectio	0.14deg/nm	slight degradation from <0.3dB	slight degradation from <0.25dB	0	E−VPG(940本/mm)利用, Bragg条件

表 4-2-2-2 各種回折格子の比較

図 4-2-2-3 VPG の評価結果

4-2-3 スイッチ光学系の開発

4-2-3-1 スイッチ光学系の構成要求

15年度にスイッチ光学系の主要部はMEMSを用いた可動ミラーを選択したが、ポート 数の拡大に向け、次の検討をおこなった。スイッチ光学系は図 4-2-3-1 に示すよう、レン ズと MEMS ミラーより構成される。ポート数 N のスイッチを実現するため条件は、MEMS ミ ラーの回転角度 θ 、ポート間の分離に必要な回転角度を $\Delta \theta$ とすると N=2 $\theta / \Delta \theta$ +1 となる。ポート数の拡大には θ の拡大、 $\Delta \theta$ の縮小が必要である。VOA 機能はミラーの角 度を最適値からずらす事で実現するため、目標の減衰量 6dB を得るためのオフセット量と ポート間のクロストーク仕様を満たす角度の和が $\Delta \theta$ となる。 Δ 縮小についてはモジュー ル設計の部分で説明するとし、本節では、回転可能な角度を拡大できる MEMS ミラーの構造 の検討結果を説明する。また、多ポート化においては、ポートを横断する際のダイナミッ ククロストークが課題なり、光スイッチ部へのシャッタ機能の付加を検討した。これは、 これまで縦方向にのみ回転し、光の径路を切り替えていた MEMS ミラーを、横方向にも回転 できるようにし、切り替え時に意図的にファイバに光が入らないようにする事で対応した。

(ア)スイッチ光学系の構成

系の構成 (イ)ミラー回転角度の配分 図 4-2-3-1 スイッチ光学系の構成

4-2-3-2 MEMS ミラープロセスの改善

2004 年度は図 4-2-3-2 に示すような片持ちミラー構造による1次元ミラーアレイを提 案し、以下の暫定スペックで2段エッチプロセスにより擬似ミラーアレイの原理試作を行 った。

- ミラーサイズ 80×100um(ビーム径 15um)、ピッチ 100um、アレイ数 80(又は 40)
- 共振周波数 30kHz、動作角度±1.5 度

● 動作電圧 150V

スペックを満たすために必要なミラーの寸法を以下のよう見積った。

- ▶ ミラー部の厚さ 20um
- ▶ 櫛歯長 200um、櫛歯幅 5um、ギャップ 4um
- ▶ トーションバー幅 3um、厚さ 2.5um

原理試作の結果、動作確認と所望の特性が得られたので、今年度は全チャネル動作可能 案ミラーアレイの試作を進めた。図 4-2-3-3 に設計したミラーアレイのマスクパターンを 示す。バンプによる配線基板との導通については、導通歩留りを考慮して 100um ピッチと はせず、200um 千鳥とした。

4-2-3-3 新プロセスによるミラーの試作

原理試作ではプロセス面での問題点として、2.5um と薄いトーションバーの作製が困難 でDRIEの分布精度では、所望のトーションバー厚をもったチップを1ウェーハから数個し か取得できないという問題があったため、動作率の向上は非常に困難であると予想された。 そこで、トーションバーの膜厚制御性を向上させるべく、Poly-Si をトーションバーとし て用い、Epi-Si をミラー・櫛歯電極に用いる新プロセスを開発した。このプロセスを用い て作製したミラーの形状を図 4-2-3-4 に示す。問題無い形状が得られた。ミラーの表面状 態を光干渉法により測定した。図 4-2-3-5 に示すとおり、30nm 程度以下のミラー平面度が 確認された。

図 4-2-3-4 試作したミラーチップ(表) 図 4-2-3-5 試作したミラーの表面形状

4-2-3-3 試作ミラーの評価結果

3 台試作し、動作ミラー数は 81/83 (#1-1)、82/83 (#1-2)、82/83 (#1-3) と良好な結果が 得られた。図 4-2-3-6 に共振周波数の測定結果(ヒストグラム)を示す。共振周波数は約 25kHz でバラツキがチップ内 10%程度であった。旧プロセスに比べると良好な特性均一性が 得られた。また、図 4-2-3-7 にV – θ 特性を示す。200V で 1.6° とシミュレーションの見 込みよりも特性が思わしくないのは、裏の櫛歯細りが原因と考えられる。

4-2-3-4 ポート数拡大に向けた MEMS ミラーの改良検討

試作したモジュール実験の結果を踏まえ、ポート数拡大のための MEMS ミラーの検討を 進めた。ポート数を大きくするには、MEMS ミラーの回転角の増大と、ポート間の間隔の縮 小が課題だが、MEMS ミラーの回転角の増大にはミラー駆動力の増加が必要となり、櫛歯電 極の本数の増加すなわち、ミラーピッチを増やす事が一つの答えになる。また、ポート間 の間隔の縮小には、クロストークの低減が必要となり、ビーム径の拡大が一つの答えにな る。以上の2点共に、ミラーピッチの増大が答えであるが、これはスイッチサイズの大型 化につながる。実現可能なポート数と、トレードオフの関係にあるスイッチサイズ、ミラ ー回転角、ポート間クロストークの検討をおこない、MEMS ミラーの改良設計を進めた。

MEMS ミラーは、動作角度目標を6度以上に設定して検討を進めた。シャッタ機能の実現 に向けては、シャッタ素子を別途付加する、1対のミラーアレイでビーム走査する、2軸 に可動なミラーアレイでビーム走査するという3つの方法を比較検討した。検討の結果、 1軸方式は、

- MEMS の構造・プロセスは容易 ---利点
- 入射角小および1対ミラーの光学系確保のためミラーを著しく長くする必要あり
- 折り返しミラーの高精度実装が必要
- X+X 式はシャッタ機能が実現困難

という特徴がある。一方で2軸方式は、これら得失が逆転しており、結論として MEMS の設計難易度は高いが、WSS モジュールの実現に有利な2軸ミラーアレイを選択した。2 軸ミラーアレイによりシンプルかつ小型なモジュールを構成することが可能になる。X 軸 回転(縦スキャン)によりスイッチ動作、Y 軸回転(横スキャン)により VOA 動作とシャッタ 機能を実現可能となる。

4-2-3-5 動作角度増の検討

波長選択スイッチのような狭ピッチで、高いミラー比率が必要とされる用途には、原理 試作同様に片持ちミラー構造の採用が最適と考えられる。既に述べたように WSS モジュー ル用ミラーにはアレイ方向(x 軸)を回転軸とする方向に大角度動作が必要とされる。そこ で狭ピッチミラーアレイの動作角度増について検討を行った。

垂直櫛歯構造では位置ズレ起因の横ぶれによる Pull-in により動作角度上限が決まる。 これを理解するために原理試作の V- θ 特性(シミュレーション)を示す。両面アライメントの位置ズレなど製造工程におけるバラツキを加味して上下櫛歯のズレを 2.5um とおくと、図 4-2-3-8 に示すように、 θ =3.7°以上で横ぶれ Δ x が許容値を超え Pull-in を発生してしまい、4°弱が限界であることが確認できる。(元々3°持てば良いという設計なので妥当ではある) つまり WSS のような狭ピッチミラーアレイでは、要求値 6°実現は困難であった。これに加えて、ミラー展開方向のミラー面捩れ(y軸回りの回転)が、図 4-2-3-9 に示すように3°動作時に約0.08°あり、無視できないレベルで発生することが判明した。面ぶれは隣接チャネルのアイソレーションを低下させるため1軸動作の懸念点として挙げられる。

図 4-2-3-8 原理試作での V- θ (ワーストケース) 図 4-2-3-9 原理試作での面捩れ見積もり結果

片持ちミラー構造の動作角度増加の方向性として、アンバランスな力のキャンセル構造 を検討したした結果、垂直櫛歯の方向を変え魚の骨のように回転軸(x)と並行に配置した形 態のモデルを提案した。この構造によれば位置ズレによる櫛歯に働く横ぶれの力は左右同 レベルに発生するためキャンセルさせ、z軸まわりの回転モーメントを殆ど発生しないた め、大角度動作が期待できる。櫛歯電極同士の機械的干渉を避けるため、櫛歯間のギャッ プを広くする必要がある。新構造に対応したミラー設計として、横型櫛歯(魚骨状)の最適 化を行った。図 4-2-3-10 に横型櫛歯の断面モデル図を示す。上下櫛歯間に電位差を与える と上部可動櫛歯が回転しながら沈みこんでくる。この際、電極は元の位置に比べ、内側に $yi = (R - hm) * (1 - \cos \theta)$ 、外側に yo だけせり出すことになる。Yo は櫛歯表面なので実際問 $\cos\theta$ ある。最大 6°回転したときの各電極がせり出し量+5um として、ギャップを求めた。 义 4-2-3-11 に設計したミラー構造を示す。比較のため、図 4-2-3-12 に示すよう、同様寸法 にて垂直櫛歯の最適化構造を設計した。櫛歯を2段構造にして先端側を短く150um、回転 軸側を 200um とすることで櫛歯電極の曲がりのバランス点を見つけた。トーションバーの 付け根のミラー部分を幅太く、トーションバー間隔を広くすることで横ぶれを最大限抑制 する構造にすると、動作角度を4~5°程度にまで動作範囲を拡大できた。

以上の2種類の動作シミュレーション結果を図 4-2-3-13 に示す。横型櫛歯ミラーは7° まで動作し垂直櫛歯と遜色ない駆動力を有していることが確認できた。最適化された垂直 櫛歯ミラーも5°までは動作したがそれ以上では Pull-in してしまうため、動作マージン が不足している。また、トーションバーのストレスが大きいため強度が心配される。大角 度動作には横型櫛歯(魚骨状)ミラーが適当であるということが確認できた。

造

図 4-2-3-13 設計した横型櫛歯ミラーおよび垂直櫛歯ミラーの特性

4-2-3-6 2軸動作ミラーの構成検討

続いて2軸化のために必要な可動フレームについて検討・設計を行った。図4-2-3-14に 可動フレーム構造案を示す。図中、緑青黄色の部分が上層Si(活性層)による部分、赤色が 下層Si(支持基板)による部分である。ここで考慮しないといけないのは、ミラーの開口率 を80%確保することが必須なので、ピッチの残り20%の中に、

- フレーム(幅をwf)を2本、
- ミラーとフレームの間隔(Smf とおく)を2本
- フレーム間隔(Sff とおく)を1本

を確保する必要があることである(図 4-2-3-15 を参照)。非常に狭いエリアにこれらを配置するだけでなく、フレームの強度、フレームとミラーあるいはフレーム同士の動作クリアランスを確保しなければいけない。図 4-2-3-14 の中では右端に示した下層 Si によりフレームを形成する方法が、ミラーとフレーム間隔 Smf を小さく詰めることができ、その分フレーム幅 Wf を確保しやすいので最良と判断した。電極の引き出し自由度も高いが、フレームに駆動電位を印加するためフレーム間のクロストークが懸念事項である。

図 4-2-3-14 狭t[®] ッチミラーアレイのフレーム構造案 図 4-2-3-15 可動フレームとミラーの位置関係

4-2-4 モジュール化開発

4-2-4-1 モジュール化の課題

波長選択スイッチは分光光学系とスイッチ光学系から構成され、その二つの光学系を組 み合わせてモジュール化するにあたり、広い波長透過帯域、ポート数の拡大、低損失、高 安定を目標として、光学設計技術、実装技術、制御技術の検討を進めた。

·波長透過帯域設計

MEMS ミラーのアレイ方向に分光された光がミラーに入射する時、ミラーの有る箇所の波 長の光だけ反射してくる。その反射してくる領域の波長だけがスイッチを透過し、帯域と なる。帯域の拡大に対し、MEMS ミラーへ入射するビームに対するミラーの面積を増やすべ く、ミラー比率の大きい新規構造の MEMS ミラーを開発した。ここではモジュール化を考慮 した帯域設計をおこなう。

MEMS ミラーへ入射するビームのサイズが設計値より大きくなると、実効的にミラー比率 が減少し、透過帯域の絶対値は減少する。ビームサイズは、ビームウェストの位置の MEMS ミラーからのずれ(実装時のずれ)、レンズの特性バラツキ、収差による絶対値のずれ 等 により影響を受ける。また、MEMS ミラーへ入射するビームの位置ずれは、波長のずれとな り、波長がずれた量だけ帯域は減少することになる。実際のモジュールでは、各光学部品 の実装ずれ、温度変動による位置ずれ等によりビームの位置ずれが発生し、帯域劣化の要 因となる。以上を図 4-2-4-1にまとめ、設計例を表 4-2-4-1に示す。ミラー比率と各劣 化要因を詳細検討し、部品仕様、実装仕様を決定する。

図 4-2-4-1 帯域の設計

透過帯域 (半幅) 絶対値(設計帯域) 36.5 GHz レンズ収差 2 GHz 帯域減少 実装ずれ 1 GHz 実装ずれ 1 GHz 波長ずれ 回折格子温特 2 GHz 筐体温特 0.5 GHz 必要な帯域 30 GHz

表 4-2-4-1 透過帯域の設計例

・多ポート化設計

ポート数が増加するほど、ポート間の間隔が増大するほど大きな MEMS ミラーの回転角 を要求する。そのため、有限な回転角度でポート数を拡大するには、間隔の縮小が必要で あるが、縮小はポート間クロストークの増加につながる。今回の開発ではミラーの傾きを 最適点からずらす事で VOA 機能を実現しているため、クロストークの増加がより顕著にな って現れる)。この問題を解決するには、図 4-2-4-2 に示すようにビーム径を大きく設計す る事で広がり角の縮小を図り、隣接ポートへのクロストークを低減する事で対応できるが、 前述の透過帯域議論に従うと、ビーム径/ミラー比率の縮小、すなわち透過帯域の縮小に つながる。このトレードオフを解決するため、MEMS ミラーに当たるビームの楕円化(縦方 向は大きく、横方向は小さくする)を図った。

図 4-2-4-2 クロストークとビーム径の関係

4-2-4-2 光学設計技術

以上に示したよう、分光光学系、スイッチ光学系の異なる光学系の接続、楕円光学系の 採用、位置ずれによる透過帯域への影響を考慮して低損失の光学系を設計する必要がある。 また、光路の長さも往復で130 mmと非常に長い、信号光が通過する光部品が11個((コリメ ートレンズ、シリンドリカルレンズ×2、回折格子、集光レンズ)が往復で×2、MEMS ミ ラー)と多い空間光学系となる。このような複雑な光学系において、最適設計をおこなうに は、光学設計ツールの使用が不可欠となる。今回の開発では市販の光学解析ソフト(CODE V) を用いた設計ツールを立上げ、試作モジュールの設計をおこなった。図4-2-4-3に設計例 を示す。

図 4-2-4-3 設計例

4-2-4-3 原理試作による確認

以上、これまで検討してきた技術を確認するため、光学部材を簡易実装した原理試作を おこなった。その結果を図 4-2-4-4 に示す。

図 4-2-4-4 原理試作の結果

4-2-4-4 モジュール構造の検討(実装技術開発)

原理試作において抽出した課題を元に、モジュール構造の検討を進めた。長い光路長で も小型化可能なよう、凹面鏡を用いた集光部と、反射鏡により、折り返し型の構造を検討 した。拡大光学系をアナモルフィックプリズムとし、光路長の短縮を図った。光学モジュ ールの形状も正方形に近くなり、温度変動、外部からの振動に対し、特性の安定化も図る 事ができる。また、特性の安定化のため、外部の振動を除去する防振構造を付加する事と した。モジュール構造を図 4-2-4-4 に示す。

図 4-2-4-4 波長選択スイッチモジュール(光学部)の構造図

4-2-4-5 制御部の開発

高速な制御のために、インターフェースの高速化と、制御回路の高速化が課題となる。 まず高速のインターフェースの検討から開始した。波長選択スイッチモジュールは図 4-2-4-6 に示すように DPRAM (Dual Port RAM)、制御回路、スイッチファブリックから構成 され、以下の動作を行う。

①ホストコントローラが各チャネルの切替情報、光減衰量を DPRAM に設定する

②ホストコントローラが切替開始信号を制御回路に送信する

③制御回路が①で設定された情報を DPRAM から読み出す

④制御回路は③の情報をもとに MEMS 駆動電圧を計算し、MEMS ミラーを駆動する ⑤制御回路が制御終了信号をホストコントローラに送信する

図 4-2-4-5 波長選択スイッチモジュールブロック図

4-2-5 まとめと今後の課題

16年度は中間目標の達成に向け、1×4の波長選択スイッチモジュールを実現すべく、 コア部品の詳細検討、光学系設計技術の開発を進め、スイッチ構造と適用する部品の仕様・ 構造を決定した。

分光光学系は今回の開発の最重要項目である多ポート化の観点から回折格子型と導波路型を比較・検討し、-40dB以下のクロストークを実現でき、実装性の点からコスト面で優れた回折格子型が最適な解との結論を得た。種々の回折格子の比較検討を進め、小型化の観点から、0.18 deg/nm と反射型の3倍の分散能力を持ち、低損失と低PDL特性を兼ね備える過型回折格子が最適と判断した。

MEMSを用いた可動ミラーを選択したスイッチ光学系は、ポート数の拡大に向け、回転角を拡大可能なミラー構成の検討を進めた。その結果、新規の櫛歯構造を開発し、目標の6°以上の回転角を実現した。また、ポート間を横断して切り替えをおこなった場合の動的なクロストークの回避策として、シャッタ機能を付加するため、横方向の回転も可能とする2軸駆動型のMEMSミラー構造の設計を進めた。

モジュール化開発は、低損失の波長選択スイッチモジュール実現のため、分光光学系と スイッチ光学系を最適の状況で結合可能とできる光学設計ツールの開発を進めた。市販の 光学解析ソフト(CODE V)を用い、分光・スイッチ光学系の設計技術の確立から、光 学モジュール部の設計・試作をおこなった。また、特性の安定化のため、外部の振動を除 去する防振構造の設計と、温度変動に強い構造と材料を明確化した。

今後の課題として、今年度設計を開始した2軸MEMS ミラーの試作、光学部材を選択し、 設計を進めた波長選択スイッチモジュール光学部の試作、制御回路の試作をおこない、波 長選択スイッチモジュールの試作を進める。

4-3 波長分散補償モジュールの研究開発

4-3-1 波長分散補償モジュール開発の概要

4-3-1-1 開発の位置付けと目標

波長選択スイッチにて構成される光ハブを開発し、メトロコアシステムを経済的に実現 する全体テーマにおいて、本副課題では光経路の切替に伴う広範な波長分散の変化を高速 に補償する可変波長分散補償器の開発を目的とする。今年度、副課題アにより検討、更新 された諸特性の目標値を表 4-3-1-1 に再掲する。

項目	仕様値		備考
	10 Gbit/s用	40 Gbit/s用	
波長帯	Cバンドもしくは L-band		
波長間隔	50 / 100 GHz	200 GHz	
波長数	80/40 ch	20 ch	
分散スロープ可変範囲	-8 \sim +8 ps/nm²	-8 \sim +8 ps/nm ²	一次分散と独立に可変
	中心: 0 ps/nm²	中心: 0 ps/nm²	
分散スロープ可変ステップ	< 4 ps/nm ²	< 0.3 ps/nm ²	
一次波長分散可変範囲	-400 \sim +400 ps/nm	-400 \sim +400 ps/nm	
一次波長分散可変ステップ	< 80 ps/nm	< 5 ps/nm	
透過帯域(3dB down,全幅)	> 40 GHz	> 95 GHz	
挿入損失	「「入損失」 < 10 dB		
群遅延リップル	<+/-2.7 ps	<+/-0.9 ps	
応答速度	< 3 ms (制御時間含む)		

表 4-3-1-1 可変波長分散補償モジュール 目標特性

4-3-1-2 波長分散補償器の基本構成

昨年度、対象とするメトロコア網の構成に着目し、異なる経路による波長分散量を経済 的に補償する構造として、①個別チャネル補償導波路型、②分散スロープ補償導波路型、 ③個別チャネル補償マイクロオプティクス型の3つについて、具体的構成の考案とその特 性予測を行った。

導波路型①②については、構造の基本となるリング導波路の周回損失を、目標の波長間 隔実現に必要な高屈折率差を有する導波路では達成が困難と考えられる 0.1dB/周未満と しても、目標の透過帯域、補償量、群遅延リップルを同時に満足することが難しいことが 判明した。

一方、個別チャネル補償マイクロオプティクス型③については、図 4-3-1-1 に示す VIPA 可変分散補償器、波長選択スイッチの光学系を応用した構造を考案した。

本波長分散補償器は当社開発済の VIPA 可変波長分散補償器と分散補償原理は同じであ り、アレイ化された MEMS ミラーを用いた光学系を波長分散補償光学系の前段に構成するこ とにより、個別チャネル毎に補償量を独立に設定できる様にしたものである。本構成にて 隣接するチャネルの補償量を連続的に変化させることにより、分散スロープ補償も実現で きる。

その個別チャネル毎の補償特性は、実現されている VIPA 可変分散補償器の特性から、目標を満足する可能性が高く、今年度の開発は本構成についての詳細検討を優先した。

回折格子:個別チャネルへの分離

図 4-3-1-1 個別チャネル補償マイクロオプティクス型波長分散補償器

4-3-2 光学系の開発

4-3-2-1 開発・検討の内容

本構成は昨年度報告の通り、VIPA 光学系からなる波長分散補償部において VIPA 板と補 償量を決定する自由曲面ミラーとの間の焦点レンズを、シリンドリカルレンズにカスタマ イズしている。このカスタマイズが、MEMS ミラーで設定されたチャネル毎に異なる VIPA 入力位置を、3D ミラー上の異なる位置に反映させ、チャネル個別の補償を可能にするポイ ントである。このカスタマイズによる影響の有無を実験とシミュレーションにて検討した。

4-3-2-2 原理実験

分散補償部となる VIPA 光学部の実験系を図 4-3-2-1 に示す。シリンドリカルレンズでの 補償光学系の透過特性を図 4-3-2-2、その群遅延特性を図 4-3-2-3 に示す。

本測定では、10GHz と 40GHz の双方を予測するべく、VIPA 板は FSR が 150GHz 間隔のもの を用い、3D ミラー上でのスポットサイズは 50 µm 程度に設定した。図中の群遅延特性の変 化は、3D ミラー位置は固定で、VIPA 入力に対するコリメータの移動量(0mm, 2mm)の変化 に対応する。

コリメータ ラインフォーカサー

VIPA 板

シリンドリカルレンズ 3D ミラー

図 4-3-2-1 分散補償部原理実験系

図 4-3-2-2 シリンドリカルレンズ での透過特性

図 4-3-2-3 シリンドリカルレンズ での群遅延特性

本測定結果より、シリンドリカルレンズにカスタマイズした VIPA 光学系においても、 補償量を可変にできることを確認できた。また当初の目論見どおり、透過特性も補償量に ほぼ依存せず、3dB帯域に関しても 40GHz (0.32nm)以上確保でき、選択した構造が多段化耐 力確保に有利であることも確認できた。

4-3-2-3 シミュレーションによる検証

本方式は図 4-3-2-4 に示すように、シリンドリカルレンズに変更した事により、各波長 ビームの補償量可変方向(スロープ発生方向)は集光されず、ほぼ VIPA 板に入力されたビ ーム幅で 3D ミラーに達する。VIPA 補償光学系において、3D ミラー上の異なる位置は、異 なる群遅延量(分散補償量)に対応しているため、この事は一つの波長が異なる遅延量の 分布をもって補償器から出力される事を意味する。原理実験での透過特性、群遅延特性に おいて、特に問題は発見されなかったが、透過特性、群遅延特性では時間方向について平 均化されている可能性があり、この影響を以下の手順でモデル化し、伝送波形シミュレー ションによる検証を試みた。

まず、M系列(Maximum length code)を用いて擬似ランダム符号列をつくり、伝送波波 形 T(t)を発生させる。次に、光伝搬に伴う位相変化 $\Phi(\omega)$ を、 ω 0を中心にテーラー展開 し、分散に寄与する2次の項に着眼した Φ 2(ω - ω 0)を exp(i Φ 2(ω - ω 0))とし、こ れにフーリエ変換した伝送波波形F(T(t))をかけ、逆フーリエ変換することによって、波 形劣化を表現する。

VIPA 光学系の伝達関数 VIPA(ω)は、ミラー上の集光ビームがスロープ発生方向にガウス 分布をもって集光されていると仮定し、ミラー上の各位置でのガウス分布に従う振幅を持 った光が波長分散を発生し、複数の分散が合成されるモデルとする。この伝達関数を用い、 ビーム径をパラメータとして、4-3-2-1 式で表せる分散補償シミュレーションを行う。

$$F^{-1}[F(T(t)) \exp(i\Phi_2(\omega-\omega_0)) \text{VIPA}(\omega)]$$
 4-3-2-1式

一例として、伝送速度40Gb/sでのビーム径50umでのシミュレーション結果を図4-3-2-5、 ビーム径1800umでのシミュレーション結果を図4-3-2-6に示す。

図 4-3-2-6 3D ミラー上ビーム径 1800um での伝送波形

本シミュレーションにより、3D ミラー上(=VIPA 光学系入力部)のビーム径が大きくなると、ジッタの発生が見られることが判った。

上記の結果は、VIPA補償光学系とMEMS ミラーを用いた補償量設定部との接続において、 補償量設定部のビームサイズへの新たな設計上の制限要因となる。

本制限に対して、今後、副課題アと連携し、ビットエラレートでの許容量の判定を進める予定である。

4-3-3 補償量可変機能の開発

前節までの設計要因を考慮し、MEMS ミラーを用いた波長分散補償量の設定部と、シリンドリカルレンズを用いた VIPA 補償光学系との統合動作確認用の一次試作を行った。

図 4-3-3-1 に一次試作モジュールを示す。本試作では 100GHz 間隔とした。MEMS ミラー 振り角1度での補償特性を図 4-3-3-2 に示す。これにより 120ps/nm の補償量の変化を確認 した。これは、可変分散スロープ量としては、短波長側の分散量と長波長側の分散量との 差が 120ps/nm とできることから、Cバンド全域において 3.4ps/nm2 (=120ps/nm÷35nm) の補償量に相当する。

補償特性におけるリップルは、主に現状の挿入損失(30dB 程度)が大きいことによる測定ノイズの影響である。今後の統合モジュールにおける実装上の優先課題は、低損失化である。

図 4-3-3-1 Ch by Ch 波長分散補償器一次試作モジュール

図 4-3-3-2 一次試作モジュール補償特性

4-3-4 スロープモニタ及び制御技術の開発

経路情報に基づく上位レイヤからの制御に関し、デバイスの駆動精度の観点から検討を 進めた。検討の基礎となる値は目標特性における、一次波長分散可変ステップ、及び波長 分散スロープ可変ステップである。このステップ値に対して VIPA 光学系と MEMS ミラーを 用いた本構成では、40Gb/s の波長分散可変ステップが本構成において最も厳しい条件とな る。

スロープ可変(±8ps/nm2×17.5nm)と一次分散(±400ps/nm)を両立独立に設定するための分散可変量 -540~+540 ps/nm を満足し、40Gb/s での波長可変ステップ 5ps/nm を満足するためには、216 個以上の制御値が必要となる。MEMS を用いた本構成では、MEMS の振り角を 216 以上に分割することで対応が可能である。

現在、12~16ビットの D/A コンバータが商用化されており入手可能であることから、 可動範囲に対して、4095~65535(212~16-1)個の精度で分割が可能であり、本構成で はデバイス上実現の可能性が高い。

直接モニタ方式については、論文を中心に調査を進めている。今後はこれらの方式に対して、副課題アと連携し伝送フォーマット依存性の有無、経路切替、伝送路の環境変動への追従性、検出精度等の性能面、小型化、集積化等の経済性の両面から課題を抽出、詳細比較を進める。

4-3-5 まとめと今後の課題

本年度は、MEMS ミラーによるチャネル個別の補償量設定を行うためのカスタマイズが施 された VIPA 補償光学系について、原理実験、シミュレーションにより補償特性向上のため の課題を明確にした。更に MEMS を用いた可変補償動作の原理確認用一次試作を行い、一チ ャネル当り 120ps/nm の分散可変量(Cバンド全域において 3.4ps/nm2 の可変分散スロープ 補償量に相当)を得た。制御モニタに関しては、経路情報に基づく上位レイヤからの制御 については、補償精度の検討を進め、直接モニタ方式については文献調査を進めた。

今後は、補償器開発に関して上記方式の改善検討を進めると共に、本格的な事業化に 向け小型・低コストの観点のもと、他の分散補償技術の進歩も踏まえ、他方式を含めた比 較検討を再度行う予定である。

制御モニタ開発に関しては、経路情報に基づく制御での分散補償の精度を実験により 検証する。本検証結果をもとに、伝送速度、環境温度等の変化による補償精度、モジュー ル規模等について、直接モニタ方式との比較・選考を行う。

4-4 偏波モード分散補償モジュールの研究開発(副課題エ)

4-4-1 偏波モード分散補償モジュール開発の概要

本副課題エでは、偏波モード分散補償モジュールを構成する3つの要素デバイス(偏波制 御器、可変DGD光回路、偏波モニタ)の開発を行い(図4-4-1-1参照)、アダプティブな制御 も含めた機能集積化し、モジュールの小型化、低コスト化を進める。

図 4-4-1-1 偏波モード分散補償モジュールの構成図

平成16年度は、中間目標である1波長分の基本構成について、副課題アでの検討結果 である表 4-4-1-1 に示す目標特性を達成するモジュールの実現に向けて、各要素デバイス の検討を行った。

偏波制御器および可変 DGD 光回路については、それぞれパッケージへの実装を行い、モジュール評価を行うとともに、目標特性との比較検討を行った。

また、偏波モニタについては、平成15年度に試作したものと市販品との特性の比較・ 検討を行った。

百日	仕様値		
項口	40 Gbit/s 用		
波長帯	Cバンド(1531.90 - 1563.05 nm)		
	もしくは Lバンド (1573.71 - 1606.60 nm)		
波長間隔	200 GHz		
波長数	20 ch		
DGD 補償範囲	0 ~ 28 ps		
挿入損失	< 10 dB		
PDL	< 0. 3 dB		
応答速度	1 ms		

表 4-4-1-1 偏波モード分散補償モジュール 目標特性

4-4-2 偏波制御器の開発

偏波制御器について、平成15年度にチップでの評価を行ったLiNb03結晶を用いた8ス テージの図4-4-2-1に示す構成の偏波制御器をパッケージに搭載し、モジュール化を行っ た。図4-4-2-2にモジュール概観図を示す。

図 4-4-2-1 Z 伝搬偏波制御器のチップ構造

図 4-4-2-2 偏波制御器モジュール

モジュールでの特性評価を行い、挿入損失は 2.4 dB、偏波依存性損失(PDL) は 0.2 dB であった。また、図 4-4-2-3 に示すように、ポアンカレ球状に円弧を描いており、偏波制 御がうまくできていることがわかる。このとき、駆動電圧 20 V 以下、応答速度 1 µs 以 下とチップと同等の特性が得られた。これらの特性は、目標特性(表 4-4-1-1)を十分に満 足している。また、導波路構造である為、最終目標の 10ch アレイ化は容易であると考えら れる。

図 4-4-2-3 偏波制御器モジュールの特性

4-4-3 可変 DGD 光回路の開発

可変 DGD 光回路については、昨年度検討した LiNb03 結晶を用いた図 4-4-3-1 に示す構成、 及び、磁気光学結晶を用いた図 4-4-3-2 に示す構成の双方についてモジュールの試作を行 った。モジュールの写真を図 4-4-3-3 に示す。特に、MO型の寸法は、42×24×12mm と小型 に作製することができた。

図4-4-3-2 MO型可変DGD光回路の構成

(a)E0型

(b)MO型 図4-4-3-3 可変DGD光回路モジュール

静特性は、EO型が、挿入損失は5.5 dB、PDLは0.4 dB、MO型は、挿入損失は、0.6 dB、PDLは0.1 dBであった。また、DGD特性の評価を行い、両者ともDGD可変幅0~20 ps、 応答時間250 µ s以下とチップ特性と同等の特性を確認した。また、MO型に関して、0~40℃ でのDGD量の温度特性の評価を行い、図4-4-3-4に示すように温度依存性の小さいことを確 認した。これらの特性が、目標特性に対する検討を行った。挿入損失については、前節の 偏波制御器を含めて、目標特性を満足しているが、PDLについては、EO型の方は、満 たしておらず、MO型の方は、上限値となっている。また、DGD可変幅については、目 標値(28 ps)を満たしていないが、これは、複屈折材料部の長さを調整することにより満足 できる。このように特性の点では、MO型の方が優位であると考えられる。しかし、最終 目標である10chアレイ化を考えた場合、E0型は、導波路構造である為、アレイ化が容易で あるのに対して、MO型は、これ以上の小型化については、困難であると考えられる。そこ で、特性の点と、機能集積化・アレイ化の点で優位な構成が異なり、来年度、継続して構 成の絞込みを行うこととした。

図4-4-3-4 MO型可変DGD光回路モジュールの温度特性

4-4-4 偏波モニタの開発

偏波モニタについては、国内外の動向調査を行い、昨年度試作した偏波モニタと市販の 偏波モニタとの比較を行った。偏波モニタとしては、主に3社から市販されており、表 4-4-4-1にそれらの特性を示す。

A, B社の偏波モニタは、InLine型となっており、可変DGDの後で、カプラで分岐する 必要がないという特長がある。また、B, C社の偏波モニタは大きく、最終目標の10chア レイ化を考えると、適さないと考えられる。また、A社のものは、DOP精度が±2%と大 きく、PMDCの制御には不十分である。それに対して、当社の昨年度試作した偏波モニタは、 InLine型ではないものの、小型で、DOP精度もよく、目標特性を十分満足していると考え られる。引き続き、動向調査を行うが、現状では、当社のモニタが優位であると考えてい る。

メーカ名	A社	B社	C社	当社
	In-line	In-line		
大きさ	39. $1 \times 20.3 \times 18.0$	(2 slots)	$257\!\times\!102\!\times\!360$	$25 \times 20 \times 8$
挿入損失	0.8 dB (Typ.)	0 E dP (Mar)		_
	1.2 dB (Max.)	0.5 db (Max.)		
入力光強度	$-23\sim7~\mathrm{dBm}$	$-40{\sim}{+}13~\mathrm{dBm}$	$0\sim 20~\mathrm{dBm}$	
SOP 精度	1% max.	$\pm 0.25^{\circ}$		
DOP 精度	$\pm 2\%$ max.	$\pm 0.25\%$		$\pm 0.35\%$
速度		1 MS/s	10 S/s	
測定帯域	700 kHz			100 kHz

表 4-4-4-1 偏波モニタの比較

4-4-5 まとめと今後の課題

偏波モード分散補償モジュールを構成する要素デバイス(偏波制御器、可変DGD光回路、 偏波モニタ)の1波長分の基本構成について所要の性能(10μs以下の応答時間とシステム 要求を満たす偏波モード分散補償特性)の達成を目指し検討を進めた。

LiNb03 結晶を用いた構成の偏波制御器のモジュール化を行い、基本特性はチップと同等の特性(駆動電圧 20 V 以下、応答時間 1 µs 以下)を確認し、本方式の有効性を明らかにした。

可変 DGD 光回路については、2つの構成のモジュールを試作・評価し、チップ特性と同 等の特性(DGD 可変幅 0~20 ps、応答時間 250 µs以下)を確認するとともに、温度特性に ついても問題ないことを確認した。また、特性と、機能集積化・アレイ化の点で優位な構 成が異なり、継続して構成の絞込みを行うこととした。

偏波モニタについては、国内外の動向調査を行い、昨年度試作した偏波モニタとの比較・ 検討を行い、昨年度試作した構成が特性的に優位であることがわかった。

今後、中間目標である1波長分の基本構成について、各要素デバイスの目標特性を達成 するとともに、最終目標である10chの機能集積、アレイ化の開発を進めていく。

4-5 総括

17年度の中間目標であるに向け、各モジュール(波長選択スイッチモジュール、可変 分散補償モジュール、偏波モード分散モジュールの実現とそれらを組み合わせた光スイッ チングノードサブシステムの動作検証に向け、各副課題の検討を進めた。

副課題アでは、平成15年度に提示した目標特性一次案に加え、国内全域にわたって End-to-end で光レベル接続するネットワークモデルを想定した要求特性(透過帯域幅、補 償量、クロストーク、群遅延リップル、応答速度等)を導出し、各モジュールの詳細仕様 を明確化し、各モジュール開発を促進した。また、各モジュールのモニタ・制御系の開発 に関して、今年度は、波長選択スイッチモジュールの制御系の試作を行った。さらに、各 光モジュールのシステム基本特性評価のため、40~80 km×40 スパン以上伝送可能な伝送 テストベッド実験系の構築を行った。今年度は特に、各モジュールおよび光ハブサブシス テムのマイクロ秒~ミリ秒の高速応答特性を評価する系の構築を行った。

副課題イでは、1×4の波長選択スイッチモジュールを実現すべく、コア部品の詳細検討、 光学系設計技術の開発を進め、スイッチ構造と適用する部品の仕様・構造を決定した。分 光光学系は多ポート化の観点から比較検討をおこない、透過型回折格子が最適と判断した。 MEMSを用いた可動ミラーを選択したスイッチ光学系は、ポート数の拡大に向け、新規 の櫛歯構造と、シャッタ機能を付加するため、横方向の回転も可能とする2軸駆動型の構 造の検討を進めた。モジュール化開発は、低損失の波長選択スイッチモジュール実現のた め、分光光学系とスイッチ光学系を最適の状況で結合可能とできる光学設計ツールの開発 を進めた。

副課題ウでは、個別チャネル補償マイクロオプティクス型における波長分散補償器の補 償部となるカスタマイズされたVIPA光学系の補償特性について、原理実験、シミュレ ーションにより特性向上のための課題を明確にし、MEMSを用いた可変補償動作の原理 確認用一次試作を行い、一チャネル当り 120ps/nm の分散可変量(Cバンド全域において 4ps/nm2の可変分散スロープ補償量に相当)を得た。

副課題ウでは偏波モード分散補償モジュールを構成する要素デバイス(偏波制御器、可変 DGD光回路、偏波モニタ)の1波長分の基本構成について所要の性能($10\mu s$ 以下の応答 時間とシステム要求を満たす偏波モード分散補償特性)の達成を目指し検討をおこない、 LiNb03 結晶を用いた構成の偏波制御器のモジュール化を行い、基本特性はチップと同等の 特性(駆動電圧 20 V以下、応答時間 1 μs 以下)を確認し、本方式の有効性を明らかに した。可変 DGD 光回路については、2つの構成のモジュールを試作・評価し、チップ特性 と同等の特性(DGD 可変幅 0~20 ps、応答時間 250 μs 以下)を確認するとともに、温度特 性についても問題ないことを確認した。また、特性と、機能集積化・アレイ化の点で優位 な構成が異なり、継続して構成の絞込みを行うこととした。

以上、各モジュールの仕様の決定、基本的な設計はほぼ終了し、中間目標達成に向け、 予定通りに開発が進捗している。次年度は、各モジュールの試作と伝送実験評価、統合モ ニタ・制御系の開発、機能統合形態の検討を進め、中間目標の達成を目指す。

5 参考資料・参考文献

5-1 研究発表・講演等一覧

「A High-Speed Comb-Driven Micromirror Array for 1xN 80-channel Wavelength Selective Switches」 0. Tsuboi Et.al, OpticalMEMS2004

[Optical Switches Based on MEMS Technology] I.Sawaki Et.al, OECC2004