平成20年度 成果報告書

シームレスな位置情報検出を実現する高精度角速度センサチップの研究開発

委託先: ㈱国際電気通信基礎技術研究所

平成21年4月

情報通信研究機構

平成20年度 成果報告書 (一般型)

「シームレスな位置情報検出を実現する高精度角速度センサチップの研究開発」

目 次

1	研究開発課題の背景
2	研究開発の全体計画 2-1 研究開発課題の概要
3	研究開発体制
4	研究開発実施状況 -1 角速度センサチップ最適設計理論の研究の研究開発の研究開発10 4-1-1 序論
4	4-1-1-2研究方針104-1-2実施状況104-1-3達成状況11-2角速度センサチップ作製技術の研究開発の研究開発15
	4-2-1 序論 15 4-2-1-1 位置付け 15 4-2-1-2 研究方針 16 4-2-2 実施状況 16
4	4-2-3 達成状況 17 -3 角速度センサチップ制御技術の研究開発の研究開発 21 4-3-1 序論 21 4-3-1-1 位置付け 21
	4-3-1-2 研究方針 21 4-3-2 実施状況 22 4-3-3 達成状況 22
4	-4 回転角速度検出技術の研究開発の研究開発 29 4-4-1 序論 29 4-4-1-1 位置付け 29 4-4-1-2 研究方針 29

4-4-2 実施状況	. 29
4-4-3 達成状況	. 30
4-5 無線と慣性センサによるハイブリッド位置計測技術の研究開発の研究開発	. 35
4-5-1 序論	. 35
4-5-1-1 位置付け	. 35
4-5-1-2 研究方針	. 36
4-5-2 実施状況	. 36
4-5-3 達成状況	. 37
4-6 総括	. 43
5 参考資料・参考文献	
5-1 研究発表·講演等一覧	. 45

1 研究開発課題の背景

ユビキタスネットワーク社会を実現する上で、無線通信システムの重要性は今後ますま す増大するものと考えられる。携帯電話、無線 LAN 等が広く普及し、その利便性が定着して いる現在、単に伝送速度を増大するだけではなく、利用者やアプリケーション側の視点に立 ち、使い方が容易で柔軟性のある便利なサービスを付加することが無線システムに要求さ れる次の機能として重要であることが指摘されている。このような観点から最も関心を集 めているものの1つが位置情報である。位置情報の応用例として既に位置情報サービス (LBS: Location Based Service)がある。1990年代初頭のカーナビゲーションから始まっ た位置情報サービスは、携帯電話の普及とともに、天気予報、レストラン情報、交通情報、 追跡等、その利用分野を急速に拡大している。

位置情報は、このように情報通信分野の新規事業を創出するばかりでなく、センサネットワーク、ユビキタスコンピューティング、コンテキストアウェア情報サービスなど新たな研究領域を生み出すことも期待されている。たとえば、モバイル端末の現在位置を知ることで、より動的に状況に応じたアプリケーションを構築することが可能となる。また、データの送信元や着信先の位置、あるいは伝播パスの情報は、情報通信のセキュリティを高める上で極めて重要である。さらに、分散制御を特徴とする無線アドホックネットワークにおいて、通信ルートの決定に位置情報は強力な手段となる。

現在、GPS など外部からの信号を利用して位置情報を得る方法があるが、この場合、電 波を受信できないビル街、建物内、地下街等に入ると信号は遮断され位置情報が失われてし まう。したがって、このような状況下でいかにシームレスに位置情報を獲得するかが重要 かつ急がれる技術課題となっている。すなわち、モバイル端末機器が外部信号に頼らず自 律的に自らの位置を特定できるということが重要な課題である。

このような自律的位置情報検出は慣性センサと総称される加速度センサと回転角速度センサとを組み合わせることにより実現できることが知られている。加速度を2回積分することで位置が得られるが、加速度計の出力は重力加速度を含んでおり、角速度センサを使って水平基準を作り出し重力加速度成分を差し引くことで水平方向の加速度を得ている。また、方位を求めるためにも角速度センサが必要である。このように角速度センサでの誤差は加速度計の出力と合わせて2回積分されることで増幅されるので位置の誤差に重大な影響を及ぼす。このため、自律的位置情報検出のためには非常に高精度の角速度センサが必要である。そのような要求を満足する傑出した高精度の角速度センサとしては光ジャイロの1種である He-Ne レーザを用いたリングレーザジャイロが実用化されている。実際、現在の旅客航空機には位置特定のために He-Ne リングレーザジャイロが標準的に搭載されている。また、H2A ロケットや深海探索艇「うらしま」も He-Ne リングレーザジャイロによって自律的に得た位置情報に従って運行している。この他、船舶、潜水艦、戦闘機にも搭載されている。

このように He-Ne リングレーザジャイロは優れた性能を持つが、He-Ne 放電管に用いる 特殊なガラスの加工や He-Ne リングレーザの制御が難しいため非常に高価であり、また最 も小さなものでも3 cm 角の大きさであり、しかも大きな電源が必要であるので、PDA、携 帯電話、ノート PC などのモバイル端末に組み込むことは不可能である。さらに消費電力が 非常に高く、使用時のコストも非常に大きい。一方、マイクロマシニング技術などを用い た超小型の角速度センサも開発されているが、それらはリングレーザジャイロではなく機 械振動式ジャイロであるため精度が低く、カメラの手振れ防止や姿勢制御程度の目的での 使用が限界であり、携帯ナビとして機能するほど正確な位置情報検出に用いることは原理 的に不可能である。したがって、He-Ne レーザ以外のレーザを用いた超小型でかつ高精度な リングレーザジャイロ方式の角速度センサチップの研究開発は、モバイル端末に搭載でき る実用的な自律的位置情報検出デバイスを実現するために必要不可欠で、時宜を得ている。 ところで、たとえ He-Ne レーザのリングレーザジャイロを用いても長時間の使用で誤差 が蓄積するので、自律的位置情報検出だけでは高い精度の位置情報を長時間に渡り提供す ることは不可能であることには注意が必要である。このため、GPS のような無線システム を用いる位置情報検出と慣性センサを用いる自律的位置情報検出とを組み合わせたハイブ リッドの方法が必要不可欠である。これによって正確な位置情報がシームレスに獲得でき るようになり、無線システムの占める割合がこれまで以上に大きくなるユビキタスネット ワーク社会に極めて大きな影響を与える。また、地下街、地下鉄、トンネル及び地中工事現 場等での災害救助、火災消火活動等の支援情報システムにも非常に有効であり、国民生活の 安全確保に与える波及効果も極めて大きい。

また、携帯電話による緊急通報では位置情報検出が特に重要視されるようになりつつあ る。本研究開発成果は位置情報取得を可能にするほど高精度であるため、携帯電話による 緊急通報に役立つことが期待される。実際、総務省は事業用電気通信設備規則を2006年1 月に改正・公布し2007年4月に施行した。改正の大きな柱の一つが、携帯電話からの緊急 通報機能を充実させることである。施行後に発売される3G端末は、原則としてGPSモジュ ールの内蔵が義務付けられている。対応端末から110番/118番/119番へ緊急通報した際 に、通報者の位置情報をGPSで測位し、警察・消防・海上保安本部に自動通知する仕組み が構築される予定である。しかし、通報者が十分な数の衛星を獲得できない場合 GPS での 測位は不可能となるため、基地局位置程度の精度しか得られなくなる。このことは、上記 規則の改正を検討した総務省の情報通信審議会情報通信技術分科会緊急通報機能等高度化 委員会の「携帯電話からの緊急通報における発信者位置情報通知機能に係る技術的条件」 についての報告書第5章「今後の課題」として大きく取り上げられている。したがって、 GPS を補完する位置情報検出システムには大きな社会的ニーズがあり、高精度角速度セン サチップがこのような役割を担うことが期待される。

2 研究開発の全体計画

2-1 研究開発課題の概要

GPS と異なり外部信号に頼らない自律的位置情報検出はデータの瞬断がなく安全を最重 要視する航空機では標準的に用いられている方法である。これは加速度センサと高精度光 ジャイロ角速度センサとを組み合わせることで実用化されている。しかし、モバイル端末 に搭載できる超小型の高精度角速度センサは実現されていない。本研究開発は、モバイル 端末でも航空機のように自律的位置情報検出が行えるようにするために、光ジャイロの原 理を用いて超小型・高精度・安価な角速度センサチップを実現するものである。

リングレーザジャイロは、光速度不変の原理に基付くサニャック効果を応用したデバイ スである。サニャック効果とは、閉じた光導波路が回転するとき時計回りの光と反時計回 りの光では導波路を一周する時間が異なるというものである。つまり、時計・反時計回り の2つの光にとって導波路の実質的な長さが異なるということである。これは、たとえ動 くものの上に置かれても、光の速度は変化しないからである。リングレーザジャイロは、 この光路差をレーザ発振周波数の差として検出するものである。すなわち、閉じた光導波 路にレーザ媒質が存在すれば、時計・反時計回りの2つの回転波モードでレーザ発振が起 きるので、導波路が回転していると、サニャック効果により2つの発振モードの周波数が 異なり差を生じることになる。この周波数差は上述の光路差と比例しているが、比例係数 にレーザ発振周波数が含まれており、この値は著しく大きいため、位相差を計測する比較 的高精度なファイバオプティックジャイロに比べても圧倒的に高精度な測定が可能となる。

本研究開発では、従来1次元的であった半導体レーザの形状を2次元的にすることによって、半導体レーザキャビティ内部にリング形状発振モードを形成する方法を用いる。この2次元レーザでは従来の1次元的なキャビティを用いたレーザと異なり、側面もミラーとなっており、He-Ne リングレーザの場合と同様の方法でリングモードが形成される。このため、時計・反時計回りの光はよくコリメートされたビームとなる。

このように本研究開発で用いる半導体リングレーザは2次元形状のレーザキャビティ端 面すべてがミラーの役割をするので、He-Ne レーザのリングレーザと同じ原理でリングモ ードが形成され、2つの回転波の干渉縞を得ることができる。したがって、従来の He-Ne リングレーザジャイロと全く同じ原理により、超小型かつ高性能で、しかも安価な角速度 センサを実現することができるのである。これを半導体マイクロマシニング技術等により 小型・高性能化された加速度計と組み合わせることで、モバイル端末機器等の正確な自律 的位置情報検出が可能となる。

ところで、この自律的位置情報検出だけでは誤差が蓄積するので、最終的には、無線シ ステムを用いた位置情報検出と組み合わせたハイブリッドの方法によって、正確な位置情 報をシームレスに提供する技術を研究開発しなければならないことには注意が必要である。 このハイブリッドの方法は、モバイル端末への搭載ということまで問わなければ、本研究 開発による超小型角速度センサチップの研究開発を待たずとも、自律的位置情報検出には 既に実用化されている高精度の光ジャイロ等を用いることで、高精度な位置情報を与える RTK-GPS による方法と組み合わせたシームレスな位置情報検出技術として別途に研究開発 することが可能である。

そこで、以下のように設定したサブテーマに沿って研究開発を進める。

- (1)角速度センサチップ最適設計理論の研究
- (2)角速度センサチップ作製技術の研究開発
- (3)角速度センサチップ制御技術の研究開発
- (4) 回転角速度検出技術の研究開発
- (5) 無線と慣性センサによるハイブリッド位置計測技術の研究開発

2-2 研究開発目標

2-2-1 最終目標(平成21年3月末)

2-2-1-1 角速度センサチップ最適設計理論の研究

- (1)端面の2次元形状によりリングレーザを形成する半導体レーザを設計する。このレ ーザにおいて時計・反時計回りの2つの回転波モードが励起されていることが確認 でき、しかもレーザ端面付近で干渉パターンを形成できるために、遠視野像におい て広がりの幅10°以内のビームを実現する。
- (2)分解能0.001°/秒までの計測を可能とするために、時計・反時計回りの周波数差 10Hzまで2つの回転波モード間の相互作用による引き込み現象を回避する技術を確 立する。

2-2-1-2 角速度センサチップ作製技術の研究開発

(1)波長860µm、実効屈折率3.3のGaAs/AlGaAsを用いるので、端面の形状効果を完

全に反映するように少なくともその3分の1以下の85nmの精度で滑らかな2次元 形状のキャビティを実現する。

(2)全端面がミラーとなるために、下部クラッド層の位置3µmよりも深い4µmの垂直 端面を有する単一量子井戸レーザを実現する。

2-2-1-3 角速度センサチップ制御技術の研究開発

- (1) サニャック効果を実現するために、時計・反時計回り回転波モードのレーザ発振を 実現する。モバイル端末に搭載可能な電源で動作するため、閾値電流密度140A/cm² を実現する。
- (2)室温連続発振の条件下でピンフォトダイオードを用いて干渉縞の変化の観測を可能 とするため、1 µ m間隔の規則正しい干渉縞の形成を実現する。

2-2-1-4 回転角速度検出技術の研究開発

- (1)素子の回転角速度に比例する干渉縞の移動によって回転角速度を検出する。従来の CD、DVD、レーザプリンタ用の半導体レーザチップパッケージと全く同様に小型で 扱いやすいものとするために、半導体レーザと受光素子を高さ 2mm、直径 5.6mm の CAN パッケージ内に収めた光ジャイロ角速度センサを実現する。
- (2)自律的位置検出に十分な精度の角速度計測を実現する。位置精度誤差1mm/秒の ためにバイアス安定性0.0001°/秒を実現する。
- (3) CAN パッケージ内に収めるために、半導体レーザの長さを 600 µ m 程度にする。

2-2-1-5 無線と慣性センサによるハイブリッド位置計測技術の研究開発

無線として RTK-GPS、慣性センサとして He-Ne リングレーザジャイロを用いる条件 下で、データ更新時間 10ms、位置精度 2.5cm を実現する。

2-2-2 中間目標(平成19年1月末)

2-2-2-1 角速度センサチップ最適設計理論の研究

- (1)端面の2次元形状によりリングレーザを形成する半導体レーザを設計する。このレ ーザにおいて時計・反時計回りの2つの回転波モードが励起されていることを確認 でき、しかもレーザ端面付近で干渉パターンをある程度形成できるために、遠視野 像においてビーム広がり幅15°以内のビームクオリティを実現する。
- (2)角速度分解能1°/秒までの計測を可能とするために、時計・反時計回りの周波数 差100Hzまで2つの回転波モード間の相互作用による引き込み現象を回避する技術 を開発する。

2-2-2-2 角速度センサチップ作製技術の研究開発

- (1) 波長860 µm、実効屈折率3.3のGaAs/AlGaAsを用いるので、端面の形状効果を反映するように少なくともその3分の1に近い100nmの精度で滑らかな2次元形状の キャビティを実現する。
- (2) 全端面をミラーとすることを可能とするために活性層よりも深い2.5 µ mの垂直端 面を有する単一量子井戸レーザを実現する。

2-2-2-3 角速度センサチップ制御技術の研究開発

- (1) 室温連続発振を可能とするレーザ発振の閾値電流密度 200A/cm²を実現する。
- (2)マイクロレンズを通してピンフォトダイオードで干渉縞の変化の観測を可能とする ため1~2 µm間隔の規則正しい干渉縞の形成を実現する。

2-2-2-4 回転角速度検出技術の研究開発

- (1)レーザの回転角速度に比例する干渉縞の移動によって回転角速度を検出する。半導 体レーザ、マイクロレンズ、2チャンネル光検出器を組み合わせた光ジャイロ角速 度センサを実現する。
- (2) 位置精度誤差 5cm/秒のために、バイアス安定性 0.1°/秒を実現する。

2-2-2-5 無線と慣性センサによるハイブリッド位置計測技術の研究開発

無線として RTK-GPS、慣性センサとしてファイバオプティックジャイロを用いる条件 下で、データ更新時間 15ms、位置精度 4cm を実現する。

2-3 研究開発の年度別計画

(金額は非公表)

研究開発項目	16 年度	17 年度	18 年度	19 年度	20 年度	計	備考
シームレスな位置情報検出を実現する高精度角 速度センサチップの研究開発							
(1)角速度センサチップ最適設計理論の研究	_	_	_	_	_	_	
(2)角速度センサチップ作製技術の研究開発	-	-	-	_	_	_	
(3)角速度センサチップ制御技術の研究開発	-	-	-	_	_	_	
(4)回転角速度検出技術の研究開発	-	-	-	_	_	_	
(5) 無線と慣性センサによるハイブリッド位 置計測技術の研究開発	_	_	_	_	_	_	
間接経費	-	-	_	-	-	_	
合 計	_	_	_	_	_	_	

注) 1 経費は研究開発項目毎に消費税を含めた額で計上。また、間接経費は直接経費の30%を上限として計上(消費税を含む。)。

2 備考欄に再委託先機関名を記載

3 年度の欄は研究開発期間の当初年度から記載。

3 研究開発体制

3-1 研究開発実施体制

ATR 波動工学研究所

非線形科学研究室 13名

(人数にはリーダを含む)

- 注)サブテーマ(1)角速度センサチップ最適設計理論の研究
 - サブテーマ(2)角速度センサチップ作製技術の研究開発
 - サブテーマ(3)角速度センサチップ制御技術の研究開発
 - サブテーマ(4)回転角速度検出技術の研究開発
 - サブテーマ(5) 無線と慣性センサによるハイブリッド位置計測技術の研究開発

4-1 角速度センサチップ最適設計理論の研究

4-1-1 序論

4-1-1-1 位置付け

本研究開発の対象である角速度センサチップは、従来のように1次元共振器を用いてリ ングレーザを構成するのではなく、2次元形状のキャビティの中にリング状のビームパタ ーンを形成することによって実現する。理論的に取り組まなければならない第一の課題は、 共振器から出射されるビームの高品質性を実現するための最適モード設計理論の構築であ る。出射ビームの高品質化によって、時計回り回転波と反時計回り回転波の重ね合せによ る干渉縞を鮮明にすることを可能にする。第二の課題は、複数のモードが引き込むことに よってもたらされる角速度センサの不応答領域の発生、いわゆるロックイン現象を回避す るために、光と物質の相互作用を考慮した2次元レーザの非線形動力学理論を構築するこ とである。この非線形動力学理論は、有効なロックイン回避策を系統的に解明する有力な 手段となる。

4-1-1-2 研究方針

角速度センサチップの目標性能の達成には、角速度センサに有効なリング形レーザ発振 パターンと、自由空間でも広がらない高いビームクオリティが必要である。それを実現す るには、適切なキャビティの形状と、電流注入を行うコンタクトパターンの設計が必要で ある。そのための最適なキャビティ形状を幾何光学や波動光学の理論によって解明する。 そして、最適なコンタクトパターンを求めるために、キャビティ内のモードパターンの計 算を現実のチップサイズに対しても可能にする、新たな高速・高精度モード計算手法の構 築も進める。また、半導体リングレーザジャイロの振る舞いを適切に記述する非線形動力 学理論の数理モデルを構築し、その理論解析および数値シミュレーションを進めることで、 ロックイン現象の定性的および定量的理解を進める。

4-1-2 実施状況

2次元共振器によるレーザ発振の研究は最近の微細加工技術の発展によって可能になった、極めて新しい分野である。それゆえ本研究開発を開始した時点では、その基礎理論と数値計算手法はまだ確立されていなかった。とくに、2次元共振器を回転させる際の物理的効果に至っては、全く手付かずの状態であった。本研究開発では、2次元共振器モード設計理論の構築、2次元レーザの非線形動力学理論の構築、その回転系への拡張に取り組んできた。これらによって、2次元共振器レーザ角速度センサチップ設計と、そこで起こる物理現象の理論解析・制御のために必要な基盤を築くことが出来た。

モード設計理論に関しては、現実の共振器サイズに対しても高速かつ高精度でモード計 算可能なガウシアン光学法を発展させたことは大きな成果であった。最終目的実現のため には、リング軌道モードのビーム品質の向上が重要となるが、その際には、共振器内部の モードパターンや遠視野像のできるだけ正確な理論値を得ることが必要となる。従来の Fox-Li 法では、現実の共振器サイズでの計算が可能であるが、大胆な近似が導入されてい るために、高い精度は期待できない。一方、境界要素法では、高い精度が実現できるもの の、現実の共振器サイズに対しては、膨大な計算資源が必要となり、事実上計算不可能で ある。そこで、現実の共振器サイズに適用可能で、高速かつ高精度でモード計算を行う潜 在性をもった、ガウシアン光学法という比較的新しい計算手法(2002年に米国エール大学 Stone 教授の研究グループにより提案)に着目した。この方法が本研究開発で設計する共 振器形状のモード計算に実際に適用可能であることを実証した。

次に、2次元共振器モード理論の回転系への拡張については、一般相対性理論に基づく 回転の効果を考慮したマクスウェル方程式を導出し、さらに、量子力学における近縮退状 態への摂動理論を援用することによって、共振器を極小にした際に発生する新たな物理現 象を明らかにした。それは、ある意味で従来のサニャック効果に補正を加えるものであり、 サニャック効果が発生するためには、回転速度をある閾値以上にしなければならないこと を解明した(2次元微小共振器サニャック理論)。その閾値は、時計回りおよび反時計回り それぞれの回転波モードの縮退の程度に依存し、静止しているときの両モードの固有周波 数差が大きいほど角速度を検出できない不応答領域が大きくなってしまうことが判明した。 この理論結果を検証するための数値シミュレーションを行い、その正しさを実証するとと もに、最適共振器形状を採用したときの課題として予想される全反射モードからの光の取 り出し手法として、リング軌道上にエアギャップを配置する共振器構造を提案した。

さらに、2次元共振器の非線形動力学理論に関しては、光と物質が相互作用する回転リ ングレーザ系の記述の精度を高めるため、シミュレーション結果と実験結果の対応の解析 を進めた。従来のリングレーザジャイロ理論では、アクティブなレーザ媒質は、共振器全 体に分布していると仮定する。このような設定の下では、モード競合によって、時計回り あるいは反時計回りどちらか一方の回転波しか存在できないことを、理論的に示すことが できる。一方、S-FOG実験においてジャイロ機能が実現していることは、実験的には、時 計回りと反時計回り両方の回転波が共存できていることを意味している。そこで、S-FOG においては、レーザ媒質が局所的に存在することが時計・反時計回り回転波の共存を可能 にする要因であることと、レーザ媒質の反転分布の空間分布が、時計・反時計回りのどち らか一方向周波数の発振のダイナミクスに揺らぎを与え、共存が実現しているのではない かということが予想される。これらの効果や、S-FOG実験の知見を取り入れた理論モデル を構成し、数値シミュレーションを進めた。

以上の成果から、2次元共振器レーザ角速度センサチップ設計、およびそこで生じる物 理現象の解析・制御のための基礎理論と数値計算手法を確立することができた。それらは、 素子設計・作製における、モード設計やロックイン現象制御の確たる指針を与えた。

4-1-3 達成状況

最初に最適モード設計理論の達成成果について述べる。ガウシアン光学法を用いた研究 の進展により、現実の共振器パラメータ(実効屈折率3.3、光の波長850nm、共振器幅600 µm)に対してリング軌道モードを高速かつ高精度で計算することに成功した。その計算結 果(モードパターン)を図4-1-1と図4-1-2に示す。さらに、対応する遠視野像 が、共振器端でのモードデータと自由空間グリーン関数を用いて高精度で計算可能である ことも実証することができた。

図4-1-1. ガウシアン光学法によって求めたリング軌道モード (Mode 0)。

図4-1-2.リング軌道モードの共振器端でのモードパターン。光の波長に対して共振 器サイズが非常に大きいため、節と腹のパターンは極め細やかになるが、その細部がうま く計算できていることが分かる。

上述のモード設計理論に基づき作製した素子の遠視野像の計測結果を図4-1-3に示 す。理論通りの計測結果が得られていることが読み取られ、また、ピークの全広がり幅も 10度以下となっており、最終目標を達成できた。

図4-1-3. 遠視野像(赤は理論、黒は実験結果)。

続いて、モードのロックインを回避する研究の達成成果について述べる。まずは、2次 元微小共振器サニャック理論の研究について述べる。リングレーザを回転してもサニャッ ク効果の起きない低角速度領域が存在することは知られており、この領域とそのような現 象はそれぞれデッドバンド、ロックインと呼ばれ、ジャイロ性能を決定する最も重要な要 因と考えられている。しかし、従来、ロックインの原因は、レーザ媒質を介した時計・反 時計回りのモードの非線形相互作用による周波数ロックであると考えられてきた。この新 しい理論的な結果により、レーザ媒質の存在しないような空のキャビティ、つまり線形理 論の範囲においても、ロックインが生じることが明らかになった。そして、デッドバンド を低減するためには、近縮退をなるべく縮退に近づけるようにキャビティ形状を工夫する 必要があることがわかった。これは、2次元マイクロキャビティを用いたリングレーザジ ャイロチップの設計の重要な指針となる。

具体的なチップ形状設計方法として、Cnv(n>2)の対称性を持つキャビティでは必ず 縮退した共鳴モードが存在することを群の表現論により導いた。もちろん、円のように連 続的な対称性を持つ場合には明らかに縮退した共鳴モードが存在するが、方向性結合器な ど信号を取り出すための何らかの素子が配置され、このような素子は少なくとも光場の境 界条件に影響を及ぼすため、測定まで含めて考えた場合には、キャビティが連続的な対称 性を持つことはできない。したがって、離散的な対称性を持ち、しかも、縮退した共鳴モ ードを持つという点で、Cnvの対称性が最も有効な形状である。

例えば、C3vの対称性を持つ図4-1-4のようなキャビティについて考える。

図4-1-4. C3vの対称性を持つキャビティと固有関数の対称性。

対称性により固有関数は図4-1-4に示すような4つの種類に分類される。ここで固 有関数は、点線に関して偶関数であり、実線に関して奇関数である。このとき、B+とB ーに属する共鳴モードは縮退し、図4-1-5(a)と(b)のようになる。

(a)(b)(c)(d)図4-1-5.縮退した共鳴モード。それぞれ(a) B+(b)B-に属する。キャビティが回転すると(c) CW(d) CCWモードに分裂する。

このとき、このキャビティを回転すると、図4-1-6に示すように、C2vのキャビティの場合と異なり、すぐにサニャック効果が現れ、固有関数も図4-1-5(c)と(d)のように回転波に変化する。つまり、ロックインの領域は全く存在しない。

図4-1-6. ロックインの全くないレーザジャイロ動作。

C 4 v の対称性を持つ場合でも図4-1-7 (a) と (b) に示すような縮退した2つの共鳴モードが存在する。このキャビティを少しでも回転したときには、これら2つの共鳴モードは図4-1-8のような回転波モードとなり、図4-1-9に示すようにロックイン領域なしでサニャック効果が現れる。

図4-1-7. C4vキャビティの縮退モ ード。

図4-1-8. キャビティ回転時に おける共鳴モード。(a) CW, (b) CCW

図4-1-9. C4vの対称性を持つキャビティを用いたロックインなしのジャイロ動作。

以上では、線形理論の範囲でもロックイン現象が発生することを指摘し、共振器形状を 最適化することにより、それを回避できることを述べた。一方、実際のレーザジャイロで は、複数のモードがレーザ媒質を介して非線形相互作用し、ロックイン現象が発生する。 以下では、非線形動力学理論に基づくロックイン現象回避の達成成果について述べる。

非線形動力学理論によって、従来の一般的なレーザのモデル方程式をベースにしながら、 屈折率変化による反射効果や熱浴から受ける熱揺らぎなどを考慮に入れた、リングレーザ ジャイロの新しいモデル方程式を構成し、その数理構造を解明した。数理モデルの解析に

よって、ロックイン回避条件は以下のような数式で表すことができた。

この条件は、ロックインを回避する素子設計および実験系構成の重要な指針を与える。 この条件の妥当性は、実験的にも実証できた。図4-1-10に、ロックイン回避条件下 で行った S-FOG 実験の結果を示す。この実験では、回転角速度がゼロになっても周波数差 がゼロにならないこと、すなわちロックインが発生しないことが読み取れる。回転角速度 ゼロ近傍においても、周波数差と回転角速度との間に線形関係が保たれるのが理想的であ るが、実際には、線形関係からのズレが生じる。サニャック効果の非線形理論は、このズ レも説明でき、実験結果を再現する理論曲線は、図4-1-10中に示した数式で表すこ とが出来る。この結果によれば、理想曲線からのズレ、すなわち回転角速度ゼロのときの 周波数差 Δ f 0は、反射率やファイバ長などの物理パラメータで調整可能である。たとえ ば、 Δ f 0をゼロに近づけるためには、反射率を出来るだけ小さく設定し、また、ファイ バ長(光路長)を出来るだけ長く設定すればよいことが分かる。

以上のように、ロックイン現象を抑制するための、最適共振器形状および最適物理パラ メータの設定指針を確立することができ、最終目標は達成された。

図4-1-10. ロックイン回避条件下で行った S-FOG の実験結果。

4-2 角速度センサチップ作製技術の研究開発

4-2-1 序論

4-2-1-1 位置付け

サブテーマ(1)で設計される2次元形状のレーザキャビティを、半導体単一量子井戸

構造により微小素子として作製する技術を確立する。

4-2-1-2 研究方針

エピウエハ作製からレーザ作製工程までを行い、作製した素子を評価しその結果から得 られた知見を繰り返し反映させることで作製技術の改善を進める。安価となるように大量 生産を念頭に置いた作製工程を考えることが重要である。そして安価となるような実装技 術を開発する。

4-2-2 実施状況

平成16年度は角速度センサチップとして機能させる2次元形状のレーザキャビティの 作製に必要な各工程の構築のために、パターニング・成膜・エッチング・電極形成など、 チップ作製に必要な各工程の開発を行った。また、エピウエハ作製とレーザ特性の向上化 を目指して、MBE 装置で作製した GaAs/AlGaAs ダブルヘテロ接合型単一量子井戸レーザエ ピウエハを用いたブロードレーザを作製し、その特性を評価した。また、様々な組成のエ ピウエハとそれを用いたブロードレーザ特性を調べることで、2次元形状のレーザキャビ ティを用いる場合の組成の最適化を行った。

平成17年度からは2次元形状レーザキャビティの安定な作製のために、前年度に開発 した作製工程の最適化を開始した。その際には、MBE 装置を用いて作製した GaAs/AlGaAs ダブルヘテロ接合型単一量子井戸レーザエピウエハに対して、RIE 装置でのドライエッチ ング加工を行うことによって、任意の2次元形状のレーザキャビティの形成を行った。2 次元形状のキャビティパターンや電極・コンタクトのパターンの描画には電子線露光装置 を用いた。また、レーザ発振の閾値を下げるために、MBE 装置で作製した様々なタイプの エピウエハを使って半導体レーザを作製し評価を行った。ここでは、エッチング端面の垂 直性と滑らかさを両立できるよう、様々な構造のエピウエハに対するドライエッチングの ガス組成や温度等の条件を調べた。そして、角速度センサとしての機能に関連するリング 形状の発振モードのみを励起するよう、所望するモード形状部分のみに電流注入する構造 を実現するプロセス技術の開発を行った。角速度センサチップの大量生産を可能とし生産 性を向上させるための技術として、ステッパによる露光法を用いた生産性の高いプロセス 技術の開発とその最適化を行った。

平成18年度は前年度に引き続いて作製工程の最適化を追求し、ドライエッチング条件 のさらなる精密化を進めた。エッチングマスクとして使用するSiO₂膜に対するドライエッ チング技術についても、任意の形状に関してより垂直で滑らかな端面を実現できるよう、 詳細な調査を行った。また、所望のモード以外をも励起させるコンタクト層での電流の拡 散を防ぎ、リングレーザモードのみを発振させるために、コンタクトの窓形状や大きさ、 コンタクトパターンの形状などの工夫を行った。そして、ステッパによる露光法を用いた ウェハプロセス技術開発を進め、キャビティ形状のパターニング工程に加え、コンタクト 窓形状や窓サイズなどの最適化やコンタクト層除去など各工程の整備を行った。

平成19年度は、エッチング条件以外の条件整備を進め、高い再現性で且つ更に滑らか で垂直な端面を得るための、性能維持の難しいドライエッチング装置の管理・整備技術と ドライエッチング前工程であるエッチングマスク洗浄に関する技術の向上を図った。また、 平成17年度と18年度で整備した最適コンタクトパターンの形成技術に加え、キャビテ ィ形状の最適化を行い、リング形状モード発振の更なる安定化を試みた。そして、前年度 までに整備してきたステッパによるウェハプロセス技術を使い、量産化可能なチップの作 製を開始した。

最終年度の平成20年度は最終目標達成を目指し、エッチングマスクの厚膜化を図るこ とでエッチング耐性を高め、滑らかさと垂直性を損なわずにこれまでよりも更に深いエッ チング端面を有する2次元形状のレーザキャビティの形成を行った。そして、これまでの 成果を合わせ、十分な滑らかと深さの垂直端面によって端面の荒れによる損失を限りなく 低減させ、詳細な理論に基づいた設計を取り入れることにより、サニャック効果が生じる ような品質の良いレーザ発振の可能な角速度センサチップの作製を試みた。

4-2-3 達成状況

図4-2-1に示すような、2次元キャビティレーザの作製工程を確立した。以下、その工程の詳細について説明する。

<絶縁膜の形成工程>

MBE装置により作製された半導体レーザ用エピウエハの上に厚さ600 µ mのSiO₂膜を形成 する。この絶縁膜は電極メタルとエピウエハの間で電気的な絶縁を行うとともに、ドライ エッチングにおけるマスクとしての役割を果たす。

<絶縁膜のパターニング>

Si0₂絶縁膜上に2次元形状のレーザキャビティのレジストパターンを形成する。これに は、絶縁膜上にレジストを塗布した後、電子線露光装置を使って直接パターンを感光させ る方法と、レクチルと縮小露光i線ステッパを用いてパターンを転写する2つの方法を用 いた。

<端面ミラーの形成>

レーザキャビティパターンを形成したレジストをマスクとして、RIE装置によりSiO₂膜 をドライエッチングする。レジストを除去した後、パターンを形成した絶縁膜をマスクと して、ICP-RIE装置を使ってドライエッチングを行う。

<絶縁膜の窓開け工程>

p型電極のコンタクトを取るために、Si0₂膜の窓開けを行う。窓開けパターニングには、 レーザキャビティパターンの場合と同様に、電子線描画装置によりレジストによりパター ンを直接描画する方法と、Si0₂膜にレジストを塗布した後、窓開け用のレチクルと縮小露 光i線ステッパを用いて窓開けパターンを転写する2つの方法を用いた。レジストをマス クにしてRIE装置によりSi0₂膜をエッチングする。その後、剥離液を用いてレジストを剥 離する。

<電極のパターニング工程>

既に基板上にキャビティパターンが形成されており、そのためにできた段差を埋めるために2層レジスト法を用いる。まず1層目のレジストで段差を埋めた後、1層目と同様の方法で2層目のレジストを形成する。その後、前工程と同じ方法で電極パターンを転写し、レジストを現像することで電極をパターニングする。

<ライトエッチング工程>

良好なコンタクトが得られるように半導体表面を10~20μm程度エッチングする。

<電極メタルの形成>

電子ビーム蒸着により、電極メタルを蒸着する。その後、剥離液によってマスクとなっていたレジストを剥離し、不要な部分のメタルを剥離する。

<基板の研磨と裏面電極(n型電極)メタルの蒸着>

へき開を容易にするために、基板を100~150 µ m程度の厚さに研磨する。その後、抵抗 加熱蒸着により裏面電極を形成する。

図4-2-1.2次元マイクロキャビティ作製工程。

平成16年度から18年度にかけて、上記プロセスにおいて最も重要である2次元キャ ビティレーザ端面の滑らかさと垂直性を確保するためのドライエッチング条件について検 討した。ガス組成及びエッチング圧力を工夫することで、電子線露光装置とステッパの2 つの方法のどちらの場合にも全作製プロセス終了後で100nm以下の滑らかさで垂直なエッ チング端面を形成することに成功した。

さらに平成19年度もドライエッチング条件の最適化を継続して進めると同時に、Si0₂ 膜によるエッチングマスクの洗浄技術の開発にも着手した。図4-2-2(a)に洗浄処 理前のSi0₂膜で形成したエッチングマスク端面付近の電子顕微鏡写真を示す。Si0₂膜のエッ チングによって生じたと思われる残渣が付着しているのがわかる。この残渣は不規則に生 じるため、その後のレーザキャビティ形成で行うドライエッチングの仕上がりの再現性を 悪くする要因となっていた。そこで、石英系の物質を僅かに溶かす性質を持つ有機アルカ リ系薬品と超音波洗浄の併用による表面洗浄処理技術を開発し、図4-2-5(b)に示 すようなマスク端面の滑らかさを得ることができた。これによりレーザキャビティ形成で のドライエッチングの仕上がりの再現性を格段に高くすることにも成功した。

図4-2-2. (a) エッチングマスク洗浄前, (b)洗浄後。

一方で、エッチングマスクの垂直性を向上させるために、露光現象に特有な近接効果を 補正する技術の開発にも成功し、近接効果による端面形状のばらつきを抑制することに成 功した。更にはドライエッチング装置のエッチング室内のワイピングクリーニング技術、 レーザキャビティ形成におけるドライエッチング前のプレエッチング技術を確立したこと で室内汚染の進行とエッチング時の異常放電を防ぐことができ、エッチング速度の安定化 にも成功した。

これらの開発技術を総合して2次元マイクロキャビティレーザを作製した。その典型的 な例として、擬似スタジアム型の半導体レーザに関する端面の電子顕微鏡写真を図4-2 -3に示す。p型電極中心に窪んでいる部分から電流を注入し、ドライエッチングにより 形成された4つの端面をミラーとして利用することで、2次元的な広がった発振パターン でのレーザ発振が可能となっている。図4-2-4,4-2-5にドライエッチング端面 の平滑性と垂直性を示す電子顕微鏡写真を示す。この図から、少なくとも85nm以下の精度 の滑らかさと深さ4μmの垂直性を有するドライエッチング端面の形成が確認される。

またエッチング端面に関する別の評価として、へき開によって形成されたミラーとドラ イエッチングによって形成されるミラーのレーザ発振閾値を比較を行った。同じ組成のエ ピウエハを用いて作製した共振器長500 μ m幅5 μ mのストライプレーザでは、へき開とドラ イエッチングによる素子は共に閾値が152mAであり、両者に遜色がないことも確認できた。

図4-2-3. 擬似スタジアムレーザの端面電子顕微鏡写真。

図4-2-4. ドライエッチング端面とそれを拡大した電子顕微鏡写真。

図4-2-5. ドライエッチング端面の断面評価結果(電子顕微鏡写真)。

電子線露光装置より生産性の高い、ステッパを使った露光技術によるパターン形成についても検討を行った。その結果、ステッパでエピウエハ上に転写した場合でもレーザパタ ーン、コンタクトパターン、電極パターンなど、複数のパターンの位置がずれることなく 転写でき、作製精度に問題がないことを確認した。ドライエッチング端面の平滑性と垂直 性が確保された2次元形状のレーザキャビティを作製することにも成功した。これにより 実用化段階においても生産性に問題が無いことを示すことができた。

さらにSi0₂膜にドライエッチングを使ってコンタクト窓を開けることで、所望のリング 軌道モードだけを選択的に励起することにも成功した。擬似スタジアム型共振器と呼称し ている2次元キャビティレーザでの、ビームクオリティの良いリング軌道モードのみに利 得を与える様にコンタクト窓構造の最適化を行った。サブテーマ(1)の図4-1-3に示 す様に、モード設計理論と一致する結果を得ることができた。。

しかし、どんなに適切なコンタクト窓形状であっても注入電流が増加すると電流が大き く拡がり、高次リング軌道モードや長軸方向に局在する軸モードの励起が引き起こされる ことによってビームクオリティが低下してしまう。そこで、従来の擬似スタジアム型2次 元半導体レーザのキャビティ中心部に孔を開け、電流の拡がりをp電極より下のコンタク ト層やクラッド層でも抑制させることを試みた。図4-2-6(a)は中心部に孔を開けた場 合のレーザキャビティとコンタクト窓の形状、図4-2-6(b)はその電子顕微鏡写真であ る。このようなレーザキャビティで遠視野像を測定すると、図4-2-7(a)に示す様な 孔を開けていないキャビティ構造の遠視野像に比べて、図4-2-7(b)で示している孔 を開けた場合では高次のリング軌道モードと軸モードの励起を抑えられていることがわか る。このことから、適切なコンタクト窓形状の設計にキャビティの形成工程での工夫を加 えることで、更に安定して高いビームクオリティを持つレーザ作製が可能となった。

図4-2-6. (a) 孔を開けたキャビティとコンタクト窓の形状, (b) 電子顕微鏡写 真。

図4-2-7.遠視野像の実験結果。(a) 孔無し, (b) 孔有り。

以上のように、本サブテーマの最終目標を100%達成し、2次元形状のキャビティレ ーザの作製技術、そして所望のキャビティモードだけを選択的に励起する構造の作製技術 の確立を果たすことができた。

4-3 角速度センサチップ制御技術の研究開発

4-3-1 序論

4-3-1-1 位置付け

本研究開発の最終目標である角速度センサチップに用いる2次元マイクロキャビティレ ーザの発振特性を評価し、半導体レーザ角速度センサチップの制御技術を確立する。

4-3-1-2 研究方針

本研究開発の角速度センサチップに用いる半導体レーザは、従来の1次元的なキャビティを用いるものとは異なり、2次元形状を有する新しいタイプのレーザである。この新しいレーザの利用を可能にするためには、発振特性を詳しく評価し、これを制御する技術を確立することが重要である。まず、系統的な解析に用いるエピウエハとして、できるだけ 閾値電流密度の低いものが望ましく、そのエピウエハを用いて作製した2次元レーザ内で 2つの異なる方向の回転波が発生していることを遠視野像で確認し、同時にキャビティ端 面では2つの回転波の干渉縞の形成を調査する。

4-3-2 実施状況

本研究開発で用いる2次元マイクロキャビティ半導体レーザは特にエピウエハを限定し ないが、なるべく発振の閾値は低い方がよい。このため、エピウエハの性能をブロードレ ーザによって評価しておくことが重要である。平成17~18年度には様々なパラメータ のブロードレーザを作製し、閾値電流密度特性を調べた。その結果 150~170A/cm² という 低閾値電流密度が得られ室温連続発振が可能となった。平成19年度以降、単一量子井戸 構造のエピウエハからより発光効率の良い多層量子ドット構造のウエハを用いたレーザを 作製し、閾値電流の更なる低減化にも成功した。

2次元マイクロキャビティレーザの基本的な特性評価項目は、電流 - 光出力特性、発振 スペクトル、近視野像、遠視野像である。特に2次元マイクロキャビティレーザは出力光 が2次元的な広がりを持つため遠視野像やスペクトル等の計測には時間を要する。また、 レーザキャビティの2次元形状やエピウエハ構造などもパラメータと考えられ、レーザジ ャイロとして最適なパラメータをサーチするためにはレーザ発振特性の評価結果を設計・ 作製へできる限り早くフィードバックする必要がある。そこで、17 年度はレーザ発振特 性を効率的に短時間で評価できるように専用の特別な特性評価装置を設計・導入した。1 8年度はこれらを用いて、サブテーマ(2)で作製される素子の評価をし、その結果を回 転実験・素子設計・作製に効率的に反映させることで、様々な形状の2次元キャビティレ ーザを開発した。

ビームクオリティを改善させた2次元キャビティレーザにて、2つの異なる方向に回転 する発振モードが発生していることを遠視野像にて確認し、この2つの発振モードにより 形成される端面での近視野像を1µm間隔の規則正しい干渉編として観測する事もできた。

また、サブテーマ(4)で、半導体光増幅器と光ファイバを組み合わせたリングレーザ ジャイロ(S-FOG)の特性を詳細に調べた結果、ジャイロ性能を向上させるためには、より低 損失でリング共振器の閉じ込め効率(Q値)の高い半導体レーザが必要であると考えた。そ こで、18年度以降、既にジャイロ信号が検出された S-FOG を小型化した Active/Passive 集積型リングレーザチップを作製・評価し、Q値を改善する方法について詳しく調べた。 この結果は、作製・設計にフィードバックさせ、チップでのジャイロ性能の向上に寄与さ せた。

4-3-3 達成状況

はじめにレーザ発振閾値電流低減化に関する調査について報告する。一般的にレーザ発振の閾値はエピウエハの性能によって決定される。その性能を評価するため、平成16年度から18年度かけて、図4-3-1の左図に示すようなGRIN-SCH-SQW構造のエピウエハを用いて様々なパラメータのブロードレーザを作製し、閾値電流密度特性を調べた。その結果を図4-3-2に示す。ここで、パルス幅1µs、繰り返し周波数1kHzのパルス電流によりレーザは駆動され、共振器長1000µm (図4-3-2で横軸0.001に対応)では150~170A/cm²という低閾値電流密度が得られた。これは、室温連続発振可能かどうかの目安となる閾値電流値200A/cm²を下回る値である。平成19年度から、更なる閾値電流密度の低減化を行うため、単一量子井戸構造のエピウエハからより発光効率の良い多層量子ドット構造のエピウエハ(図4-3-2の右図)を用いたレーザの閾値特性について調べた。図

4-3-2に示すように共振器長 1000μm で、キャビティ端面に HR コートを施したレー ザにおいて、最終目標であった 140A/cm²以下の閾値電流密度を達成した。

図4-3-1. 閾値電流密度低減化のために試作したエピウエハの構造。

図4-3-2.2種類のエピウエハで試作したブロードエリアレーザの閾値電流密度評価 結果。

エピウエハ構造に関する検討の一方で、レーザ発振特性を効率的に短時間で評価できる ように専用の特別な特性評価装置の開発も行った。マウントしていない素子の特性をパル ス発振により効率的に評価する場合には、レーザが2次元形状を有するため、広い角度の 遠視視像を短時間で測定する必要がある。そこで、レーザの駆動電流パルスとレーザから の出力光とを同期させ、遠視視像測定時間を飛躍的に短縮することに成功した。このよう な工夫により、様々な形状の2次元レーザを効率的に評価し、レーザ発振特性を向上させ るためのパラメータの絞り込みを進めた。例として擬似スタジアム型レーザに関する特性 評価結果を図4-3-3~5に示す。

0 0 -40 -20 -40 -20 0 0 20 40 20 40 Angle (deg.) Angle (deg.) 図4-3-5. 擬似スタジアム型レーザの遠視野像。左図は窓なし構造,右図は窓付き構 造。

I.

t

図4-3-5の左図はリング軌道に関連するモードを励起するように、絶縁膜にリング 型のコンタクト窓を開けた素子に関する遠視野像の結果である。このリング軌道モードか ら出射されるレーザ光は端面におけるスネルの法則に従う出射角度は±約19度となるの で、この方向の鋭いピークは正確にこのリング軌道モードがレーザ発振していることを示 している。更によりビームクオリティの高い遠視野像を得るために、キャビティ端面の曲 面ミラーに窓構造を設けたレーザも作製した。図4-3-5の右図が窓構造を設けた場合 のレーザにおける遠視野像である。図4-3-5の左図に示す窓構造のない場合の遠視野 像と比較してわかるように、ビームクオリティを低下させる高次横モードの発振を完全に 抑制したことがわかる。

このようなビームクオリティを改善したレーザにおいて近視野像を観測し、規則正しい 干渉稿が観測できた。その結果を図4-3-6に示す。横全体が幅60µmのレーザ端面 である。縦方向にも干渉稿が形成されているのは、基板からの反射光と直接伝播した光の 干渉によるものである。これにより 1µm程度の規則正しい干渉稿が形成されていること がわかる。また、先述のように、遠視野像でリング軌道と対応したピークが確認されてい ることを踏まえると、この干渉稿は時計・反時計回り光から形成されたものといえる。

また、キャビティ形状の対称性を工夫した2次元キャビティレーザでの干渉稿形成についても調べた。これはサブテーマ(1)で報告したように、キャビティ形状の対称性が適切でないと低回転角速度で大きなデッドバンドを生じるためである。そこで、理論上デッドバンドが0となる C4v 対称性の2次元キャビティレーザを作製した。この試作レーザは、対称性を保ちながら、発振させるリング軌道上にエアギャップを配置することで干渉光の取り出しが容易になるように考案したものである。時計回り・反時計回りの2モードのレーザ発振光は一部をエアギャップで反射させることで外部に取り出され、図4-3-7に示すように遠視野像にて干渉パターンを観測することができた。一方で、光スペクトルによってリング軌道に対応する縦モード間隔が観測され、その干渉パターンは時計回り、反時計回りのレーザ発振モードによって形成したものと確認できた。この遠視野像において干渉稿が 0.78°間隔であることから、素子端面より 73.5µm 離れたところでは 1µm 間隔の干渉稿となっていることがわかる。これにより、1µmの干渉稿形成に成功し、最終目標は達成された。

図4-3-7. エアギャップ構造 2D マイクロキャビティレーザ素子からの遠視野像。 (a) 広領域, (b) 狭領域

半導体レーザジャイロチップを実現するもう一つのアプローチとして、これまで詳しく 調べてきた半導体ファイバオプティックリングレーザジャイロ(以下 S-FOG)をそのまま小 型化するという方法が考えられる。これを実現するためにActive/Passive 集積型チップを 考案し、設計と試作を行った。図4-3-8に示すように、このデバイスは S-FOG と同様 なリング形状の光導波路によって構成される。リング型光導波路の一部には光を励起する ためのActive 領域を設け、それ以外は光を導波するのみの Passive 領域で構成する。この リング形光導波路は RIE 装置を用いたドライエッチングによってリッジ形に形成すること で作製を行った。また Passive 導波路部分には発振波長の光に対しては透明な半導体を用いた。

図4-3-8. Active/Passive 集積型リングレーザの概念図。

平成17年度から18年度において、Active 部と Passive 部の導波路コアの位置合わせがしやすく、作製が容易な装荷型と呼ばれる構造を採用したリングレーザチップの発振特性について調べた。装荷型構造のイメージを図4-3-9に示す。

図4-3-10(a)は実際に作製した素子の写真である。この素子の直径Dは5mmである。 図4-3-10(b)に示すように試作した素子はヒートシンクに設置し、ペルチェを用い て温度制御できるようになっている。また、外部に光を取り出せるよう、光ファイバを結 合導波路の一端に結合させている。

図4-3-10. 試作した Active/Passive 構造リングレーザの写真。

このようにサイズの大きい導波路全体にわたって均一なリッジ型の導波路を作製し、結 晶再成長を行い、電極を形成することは難しい。特に共振器全体のエッチング端面の垂直 性・平滑性が得られない場合には、散乱損失が大きくなりレーザ発振が起こらない。この ように作製プロセスは非常に困難であるが、ジャイロチップとして角速度検出の感度を大 きくするにはサイズが大きいほうが望ましいため、上記のような大きなサイズでのチップ の試作・評価を行った。

これらの素子に電流を注入し、試作した素子が実際にレーザ発振することを確認した。

しかし、この試作チップを用いてレートテーブルを使用した回転実験を行うも、回転角 速度に対応するビート信号を検出するには至らなかった。S-FOGの実験との比較から、装 荷型構造でのActive 領域と Passive 媒質の境界の導波損失が大きい事が、このチップでの ジャイロ信号が得られない原因であった。

上記の問題を解決するために、19年度下半期は図4-3-11に示すような Butt-Joint 構造の検討を行った。ビーム伝搬法による数値計算を用いた事前評価では、 Active/Passive 境界領域での損失の値が装荷型の場合は約4dB、Butt-Joint 構造の場合に は約0.12dB となり、Butt-Joint 構造の方が装荷構造よりも圧倒的に損失が小さくなるこ とが推定された。この結果をもとに、リング型共振器を直線導波路や曲がり導波路、結合 導波路及び Active/Passive 境界領域の各部分に分けて試作し、それぞれの損失についての 評価、そして新たに採用したプロセスの最適化の評価を行った。その結果、Active/Passive 接続部での損失が0.85dB と見積もることができ、シミュレーションで予測された値よりも 大きいものの、前回の Active/Passive 素子試作と比較しても十分に低損失な接続が可能で あることがわかった。この試作による評価結果をもとに、Butt-Joint 構造による Active/Passive リング型共振器半導体レーザの試作を行った。図4-3-12は実際に作 製した素子の写真である。

図 4 - 3 - 1 1. Butt-Joint 型構造。

図 4-3-12. Butt-Joint型方式のActive/Passive集積型リングレーザ。

この素子に電流を注入し、試作した素子が実際にレーザ発振することを確認した。例として直径5mmのActive/Passiveリングレーザから取り出された時計回り光と反時計回り光 に関する I-L 曲線を図4-3-13に示す。発振閾値は約115mA であり、同じ大きさの装 荷型のリングレーザと比べて発振閾値を約1/2倍まで低減することに成功した。また、閾 値よりわずかに高い領域にて、時計回り光と反時計回り光が共存して発振できていること もわかる。

図4-3-13. I-L曲線。黒点が時計回り光(CW)の強度、赤点が反時計回り(CCW)の光強度。

次にButt-Joint型Active/Passiveリングレーザのコヒーレンス特性についても調べた。 図4-3-14に、自己ヘテロダイン法により測定された直径10mmのリングレーザにおけるRFスペクトルを示す。図中のピークの線幅は約800kHzであることから、レーザ発振線幅は約400kHzと判明した。通常、半導体レーザの線幅は数MHzから数+MHz程度であることを踏まえると、Active/Passive集積型構造を採用したリングレーザにより、干渉稿形成に必須であるコヒーレンスを飛躍的に向上することができたといえる。

図4-3-14. 自己へテロダイン法によるレーザ線幅測定結果。図中のピークの半値半 幅がレーザ線幅を示す。

更に、Active/Passive 集積型構造では Passive 導波路長の2乗に反比例してレーザ線幅の狭窄化が可能であることも明らかになった。そこで、Active 長を固定して、Passive 長を240mm まで長くした Active/Passive リングレーザを作製し、大型であっても低閾値でレーザ発振可能であることも確認できた。

このように、Butt-Joint 方式の Active/Passive 集積型リングレーザチップは、発振閾 値電流の低減化や高いコヒーレンスを有している。そのため他のタイプの半導体レーザに 比べてジャイロ性能向上パラメータであるQ値が非常に高いと考えられる。実際、このチ ップをレートテーブルを用いて回転させると、チップ上で回転角速度依存現象が観測され る。これは世界初の成果であり、その内容はサブテーマ(4)で詳しく説明する。 以上、本サブテーマにおいて、CW/CCW両方向発振の実現、エピウエハの改良による発振 閾値電流の低減化、干渉稿の形成、そして S-FOG を小型化させた Active/Passive レーザチ ップ開発とその特性の解明に成功した。これら制御技術を確立することで、本サブテーマ の最終目標は100%達成できた。

4-4 回転角速度検出技術の研究開発

4-4-1 序論

4-4-1-1 位置付け

素子を回転したとき、時計回りと反時計回りの回転波モードの周波数にはレーザの回転 角速度に比例した違いが生じ、この周波数差に比例して時計回りと反時計回りのレーザ発 振モードによる干渉縞が平行移動する。これを検出することで、回転角速度が特定でき、 角速度センサとして機能することを示す。

4-4-1-2 研究方針

本研究開発は、2次元マイクロキャビティレーザを用いた半導体レーザジャイロの実用 化を目指している。そのためには、2次元マイクロキャビティレーザの製作技術の研究開 発及び作製を進める上で必要な、2次元レーザの各種パラメータとジャイロ性能の関係を 解明することが重要である。しかしながら、作製プロセスも研究の途中にある段階の2次 元マイクロキャビティレーザでこのようなパラメータ依存性を調べることは効率的ではな い。そこで、より扱い易い半導体リングレーザとして、半導体光増幅器と光ファイバを組 み合わせたリングレーザを用いて、ジャイロ性能を向上させる方法について調べることに する。このリングレーザを用いることで、アクティブ媒質とパッシブ導波路間の結合損失 や光ファイバの長さ依存性など様々なパラメータを容易に変化させることができ、半導体 リングレーザを用いたジャイロ性能の典型的なパラメータ依存性を研究することが可能と なる。ジャイロ機能・性能に関する評価は、レートテーブル上に搭載された評価システム を用いて行う。ここで得られた知見はジャイロ用2次元レーザの設計・作製に反映される。

4-4-2 実施状況

素子を回転したとき、時計回りと反時計回りの回転波モードの周波数にレーザの回転角 速度に比例した差を生じるため、この周波数差に比例した速度で時計回りと反時計回りの 回転波モードの形成する干渉縞が平行移動する。最終的には、これを検出することで、回 転角速度を特定し角速度センサとして機能させることになる。しかしながら、研究開発当 初、半導体レーザを用いたリングレーザジャイロに関する報告は全くなかった。そのため 18年度までにレーザチップよりも扱い易い半導体光増幅器と光ファイバを組み合わせた リングレーザを開発した(以下、この半導体・光ファイバリングレーザジャイロを S-FOG と 呼ぶ)。S-FOG を用いた詳細な調査を行い、実験結果が従来のサニャック効果の理論と多く の点で一致することを示し、半導体を用いたリングレーザジャイロが実際に機能すること を明らかにした。19年度は、S-FOG に関する回転実験を数多く行い、ジャイロ性能に影 響を及ぼす各種要因についての調査を行った。特に、低回転角速度領域におけるビート信 号の振る舞いや、回転角速度の検出精度を決める重要な要因の一つである、ビートスペク トルの線幅とリングキャビティのQ値の関係については重点的に調査を行った。最終年度 である20年度では、これらの知見と設計理論を元にして作製した Active/Passive 集積型 リングレーザチップを用いて回転実験を行い、世界で初めてウィンキング現象と呼ばれる、 回転角速度に依存した光強度変化現象を捉えることに成功した。また、S-FOG を用いて最 終目標に記したバイアス安定性が達成できることを示した。

4-4-3 達成状況

回転実験にはジャイロ開発専用のレートテーブルを用いた。時計回りと反時計回りの回 転波モードの存在が確認できている2次元マイクロキャビティレーザとその評価システム をレートテーブルに搭載し、評価システムも一緒に回転させ、様々な形状やエピウエハの 2次元レーザに関してジャイロ機能との関係を調べた。その結果、2次元マイクロキャビ ティレーザでは、形状やカプラによる非対称性やレーザ媒質の非線形性によるロックイン の領域が大きくサニャック効果が確認できていない。特に、レーザ媒質がガスやブリルア ン散乱の場合のように時計回りのモードと反時計回りのモードのそれぞれの利得が別々で あるときとは異なり、共に同じ半導体レーザ媒質から利得を得ようとするため、複雑な相 互作用が生じるものと考えられる。

そこで、2次元マイクロキャビティレーザでリングレーザジャイロを実現するための必要十分条件を明らかにするために、半導体光増幅器と光ファイバを組み合わせたリングレーザを構成し、レートテーブルを用いることによってジャイロ性能評価を行った。アクティブなレーザ媒質である半導体光増幅器の長さに対するパッシブな光導波路である光ファイバの長さの比率や光ファイバからの光の損失など、様々なパラメータを容易に変化させることができるという点がこのリングレーザの特徴である。

平成18年度までに、この半導体光増幅器と光ファイバを組み合わせたリングレーザを 用いてサニャック効果を確認することに成功した。これは、世界初の半導体を用いたリン グレーザジャイロの実現である。これを S-FOG (SOA Fiber-Optic Gyro) とよぶことにす る。S-FOG によって、半導体をレーザ媒質に用いてもリングレーザジャイロが実現可能で あることが明らかになった。

S-FOG 実験系を図4-4-1に示す。SOA 両端の光ファイバピグテールを分岐比 99:1の カプラで接続し、リングレーザを構成する。カプラによりリング外に取り出した時計回り 光と反時計回り光を 50:50 カプラで合波した後フォトダイオード(PD)で2 乗検波し、両 光波のビート信号を得る。実験系全体を回転テーブル上に設置し、角速度を変化させてビ ート信号を測定した。図4-4-2に SOA の注入電流を発振閾値の1.04 倍に設定した場 合のビート信号スペクトルを示す。さらに図4-4-3に角速度に対するビート信号のピ ーク周波数と強度の変化を示す。周波数は角速度と比例しており、比例係数(スケールフ ァクタ、SF)は2.463[kHz・sec/deg]であった。

図4-4-1. S-FOG 実験系。(a)構成図, (b) 写真。

サニャック効果によるビート信号周波数 Δf の理論値は、

$$\Delta f = \frac{4A}{n\lambda P}\Omega \qquad (4-4-1)$$

で表される。本実験では、面積 A=0.804m², 屈折率 n=1.474, 波長 λ =1561nm, パス長 P=6.132m であり、計算された SF は 2.463 [kHz·sec/deg]で、実験値との誤差は僅かに 0.6%である。 また式 (4-4-1) 中の各パラメータ依存性を詳しく調べ、全ての実験結果が式 (4-4-1) を満足できることも確かめた。

以上のように、従来非常に難しいと考えられていた半導体をレーザ媒質に用いたリング レーザジャイロが実現可能であることを、世界で初めて示したことは非常に大きな成果で あった。実際、2006年10月にメキシコで開催された国際会議第18回 Optical Fiber Sensors におけるファイバジャイロ30周年記念シンポジウムにおいて、本研究開発のS-FOG に関す る発表は大変好評であった。

次に S-FOG を用いてジャイロ性能を決定するパラメータとその依存性について調べた。 その結果、回転角速度の検出精度を決める重要な要素の一つであるビートスペクトルの線 幅がリングキャビティの閉じ込め効率(Q値)に依存することを発見した。図4-4-4に はリングキャビティの周長によってQ値を変化させた場合のビートスペクトルの線幅の変 化について示す。この結果が示すように、Q値の約2乗に反比例して線幅が狭くなること がわかる。Q値を決定する要因の一つは、SOA と光ファイバの間の結合効率である。結合 効率が悪くなるほどキャビティ内の光の閉じこめが悪くなるため、Q値は低下する。さら にQ値の低下はレーザ発振閾値を増加させる要因となる。表4-4-1に SOA-光ファイ バ間の結合効率が異なる、2つの SOA モジュールにおける線幅と結合効率との関係を示し た。SOA モジュール1を用いたリングレーザでは、その発振閾値がモジュール2に比べて 約18mA も高い。この閾値から見積もられる SOA モジュール1 と2の結合効率は、それぞれ 23.4%と 34.0%である。これより、この S-FOG では結合効率が 10.6%高くなると、線幅が 約5.5kHz 狭くなることがわかる。

図4-4-4. Q値 vs. ビート信号の半値全幅。

図4-4-5. 高速回転テーブル。

	閾値電流 [mA]	結合効率[%]	半値全幅 [kHz]
SOA1	67.9	23.4	13.4
SOA2	50.0	34.0	7.92

表4-4-1. SOA とファイバ間の結合効率と線幅との関係。

以上の結果から、SOA と光ファイバの結合部の結合効率、キャビティ内の損失がジャイ ロ性能を決定する重要な要因であることが明らかになった。ここで得られた知見は、サブ テーマ(3)の達成状況で報告された Active/Passive 集積型リングレーザチップの設計指 針として活用され開発を進めてきた。また、このような Active/Passive 集積型リングレー ザチップの開発と並行して、さらに高速に回転可能なレートテーブルの開発も行った。式 (4-4-1)によれば、サニャックビート周波数は面積だけでなく回転角速度に比例し て増加する。つまり、より高速な回転を加えることでのサニャックビート信号の検出が期 待できる。そこで、これまで 1000°/秒までしか回転できなかったレートテーブルに替わ り、最高角速度 20000°/秒を達成できる新たなレートテーブルを開発した。図4-4-5 にその外観を示す。

このレートテーブルを用いて Active/Passive 集積型リングレーザチップの回転実験を 行い、世界で初めて半導体チップでウィンキングと呼ばれる回転依存の強度変化現象を捉 えることに成功した。ウィンキング現象とは、ロックインと呼ばれる回転角速度のある閾 値以下で時計回り光と反時計回り光の強度が回転角速度に依存して変化する現象のことで ある。図4-4-6に半径 4.6mm のリングレーザチップにおける時計回りと反時計回り光 の回転角速度に対する強度変化を示す。静止時において時計回り光と反時計回り光は異な る光強度で発振しており、10000度/秒程度までは全く変化を示さない。しかしその回転角 速度以上で急激に変化してほぼ同じ強度値をとっていることがわかる。

図4-4-6. Butt-Joint 型 Active/Passive リングレーザチップ におけるウィンキング現象。

図4-4-7.装荷型 Active/Passive リング レーザチップにおけるウィンキング現象。

この結果はサブテーマ(3)で報告した Butt-Joint 接続型のリングレーザチップにより 与えられたものである。しかし Butt-Joint 型より結合損失の大きい装荷型接合と呼ばれる 結合方式を採用したリングレーザチップでは、図4-4-7に示すように、全くウィンキ ング現象を示すことがなかった。この結果は結合損失の改善が重要であることを意味し、 図4-4-6に示すウィンキング現象を示したリングレーザジャイロチップも、さらにQ 値を向上させることでビート信号の検出が可能なジャイロチップが実現できると考えられ る。

しかし、現段階において、半導体レーザチップ上でサニャックビート信号は観測されて いない。そこで代替案として、Q値を改善して精度を向上した S-FOG をできるだけ小型に パッケージする方法について検討した結果を報告する。これまでの実験で用いていた S-FOG は、パラメータを容易に変更できるように直径が 1.2mの円盤上に構築しており、かなり大 きなものであった。しかし、S-FOG の実験によりリングレーザ部のQ値を改善することで サニャックビート信号の線幅が狭窄化され、角速度測定精度が向上することが明らかとな った。よって、たとえ小型化のためにリングレーザ部の囲む面積が小さくなり、スケール ファクタが小さくなったとしても、サニャックビート信号を検出して回転角速度を測定す ることが可能となる。そこで、(1) 光ファイバの長さを 200m まで延長し、(2) ファイバ 結合損失の小さな SOA モジュールや(3)分岐比が 1%と小さい光取り出し用カプラを使用 し、(4)損失低減のためにファイバ接続部をすべて融着することでQ値を高めた S-FOG を、 (5) 雑音と周波数特性を最適化した小型 PD モジュールや(6)曲げ損失を最小化できる直 径 70mm のファイバボビンを採用することで小型パッケージに納めた、光ジャイロ角速度セ ンサを開発した。図4-4-8に試作した小型 S-FOG モジュールの写真を示す。サイズは 高さ 42mm、直径 76mm の円筒形で、体積は 190cm³であった。図 4 - 4 - 9 に小型 S-FOG で のサニャックビート信号ピーク周波数と角速度との関係を示した。両者が比例関係にある ことがわかる。これから、Q値の改善がジャイロ小型化にも有効であることが実証された。

図4-4-8. 光ジャイロ角速度センサ として開発した小型 S-F0G モジュール。 サイズは高さ 42mm, 直径 76mm。

ピーク周波数の回転角速度依存性。

また S-FOG のモジュール化と並行して、Er 添加型光ファイバをレーザ利得媒質とした新 たなリングレーザジャイロ (E-FOG; Er-doped fiber optic gyroscope)の開発とそのモジュ ール化も行った。S-FOG の場合、半導体光増幅器と光ファイバ間で構造上結合損失が生じ やすく、それがジャイロ性能を制限する要因となっている。しかし E-FOG の場合、Er 添加 ファイバと光ファイバを融着により結合損失が小さくなるように接続することが可能であ る。これにより、S-FOG に比べて角速度検出精度が飛躍的に向上し、より小型で高精度な ジャイロモジュールの作成が可能となる。また E-FOG では、既存の EDF アンプ実装技術を 援用することが可能である。図4-4-10は作成した E-FOG モジュールの外観を示す。 サイズは高さ 2.4 cm、面積 58.3 cm²の直方体で、体積は 140 cm³ である。この内部のリング レーザは、約 110m の光ファイバと 13 cm の Er 添加したフッ化物光ファイバ、90:10 の分岐 比の光取り出し用カプラ、Er 励起用 LD と WDM カプラ等により構成されている。図4-4 -11に示すように、S-FOG より小型な E-FOG モジュールでより低回転角速度まで検出で きていることがわかる。

図4-4-10. 光ジャイロ角速度 センサとして開発した小型 E-FOG モジュール。サイズは高さ24mm, 面積 58.3mm²。

図4-4-11. 小型 E-FOG モジュールの特性。

E-FOG は光ファイバや使用部品点数が多いため、これ以上の小型化には限界があるかも しれない。しかし E-FOG 開発により精度に特化した光ジャイロ実現に向けた新たな方向性 を提示することができた。

次にバイアス安定性について報告する。バイアス安定性とは、サニャックビートスペク

トルのピーク周波数の時間的な安定性である。一定の角速度で回転している場合にこのピーク位置が変動すると、その変動分だけ角速度の測定誤差が生じてしまう。そのため、この変動を小さく抑えることが重要となる。18年度は、約5分間の回転実験において、ビートスペクトルビーク位置の変動は、±0.1°/秒以内に留めることができた。19年度は、Q値を向上させるように改良を加えたS-FOGを用い、約20分間まで延長した測定で±0.1°/秒以内の変動に留められていることを確認した。20年度は、(1)Q値を更に改善するために474m もの長尺ファイバを用い、(2)スケールファクタを大きくするためリングレーザ部の囲む面積を1万平方メートル(120m x 90m。サッカーグラウンド程度)に拡大したS-FOG 実験系を構築し、(3)サニャックビート信号の測定をDC 近傍ではなく周波数雑音の少ない 第一縦モード近傍で行う、ことでバイアス安定性が大幅に改善されることを確認した。図 4-4-12に地球の自転を測定した結果の安定度を示す。3時間以上もの長時間にわたり、0.0001°/秒以内に留まっていることが示された。

図4-4-12. S-FOG のバイアス安定性。3時間にわたり、0.0001°/秒以内に留まっている。

以上をまとめると、半導体をレーザ媒質とするリングレーザジャイロである S-FOG の開 発に世界で初めて成功し、最終目標に記したバイアス安定性を達成できたこと、そしてチ ップ上でジャイロ機能に関係するウィンキング現象を捉えることに成功したが、サニャッ クビート信号の検出可能なレーザジャイロチップの実現にはまだ至っていない。この点を 考慮すると、最終目標の達成状況は80%である。しかし、先述のように結合損失や導波 路損失をさらに低減させることで、Q値の増加によるジャイロ性能の向上が見込めるため、 半導体レーザチップによる角速度センサは実現可能と考えられる。

4-5 無線と慣性センサによるハイブリッド位置計測技術の研究開発

4-5-1 序論

4-5-1-1 位置付け

無線システムによる位置情報検出と慣性センサによる位置情報検出とを組み合わせた位 置計測装置を研究開発し、正確な位置情報をシームレスに獲得する技術を実現する。この 技術は、本研究開発による超小型角速度センサが実用化されたとき、モバイル端末等に応 用することが可能である。

自律的位置情報検出に利用可能な角速度センサとしては、本研究開発で目標としている

ほど小型で高性能なものは現存しない。大きさや性能を犠牲にしてでも様々なものを試用 して、無線と慣性センサを相補的に使用することでジャイロ性能を補完する方法をあらか じめ検討しておくことが重要である。このような研究を並行して進めることで、本研究開 発による高精度角速度センサチップが実現されたならば、無線による位置検出システムと 組み合わせた効果的な利用が直ちに可能になる。

ジャイロの誤差は、GPS を使用できる状況の際に得られる位置情報を用いて補正を行う。 また、このような誤差には様々な要因が複雑に絡んではいるが、適切に誤差解析を行えば ジャイロ性能をより向上させることができる。つまり、RTK-GPS の与える非常に高精度 の位置情報とジャイロによる位置情報を詳しく比較することで、ジャイロの持つ誤差の特 徴を抽出し、それを利用して常にジャイロの誤差を補正し、ジャイロのみを用いて検出す る位置情報の誤差をより小さくすることが可能となると期待される。

4-5-1-2 研究方針

装置の大きさを問わなければ、自律的位置情報検出技術は航空機やロケット等に利用されていることからもわかるように非常に成熟した技術である。GPS による位置情報検出技術も同様に成熟している。これらを組み合わせることで高精度な位置情報をシームレスに獲得できることを示す。

まず、複合位置計測方式および高性能角速度センサの比較検討を行い、位置計測装置の 内部構成を決定する。この決定に従い、実際に角速度センサを用いて位置計測装置を作製 する。この高性能角速度センサと GPS を組み合わせたシステムには、GPS が働かないとき にジャイロ情報に基づく位置検出に切り替えるなどの基本的な機能を持たせる。さらにこ の計測装置の機能を改良し、周辺に種々の実験機材を付加構成していくことで、移動実験 とリアルタイムでのデータ収集を行える実験システムを構築する。

ハイブリッド位置計測装置を中心として構築した実験システムを用いて、種々の移動パ ターンでの位置測定実験を行い、この自律的位置情報検出の精度と無線システム位置検出 の精度との補完関係を明らかにする。

一方、このように高性能ジャイロや GPS の成熟した技術を組み合わせた場合でも位置測 定誤差は避けられない。このようなシステム化に伴う誤差を低減するために、位置計測精 度を評価し、誤差の原因を分析し、精度を向上させるためにどのような技術要素が必要で あるかを割り出し、対策となる方式を開発する。また、歩行者等の移動体に十分な更新時 間の位置計測を実現する。

4-5-2 実施状況

まず、ハイブリッド位置計測装置の内部構成について比較検討した。ハイブリッド方式 についてはオープンループ方式とクローズドループ方式、ジャイロシステムについてはフ ァイバオプティックジャイロと He-Ne リングレーザジャイロを候補にそれぞれ比較検討を 行い、位置計測装置の実現のための期間と予算から、He-Ne リングレーザを用いたクロー ズドループ方式での実現を選択した。

次に、実際に角速度センサを用いて位置計測装置を作製することで、この自律的位置情 報検出の精度と無線システム位置検出の精度との補完関係を明らかにした。使用する角速 度センサを、中間目標ではファイバオプティックジャイロ、最終目標では He-Ne リングレ ーザジャイロを想定していた。しかし、どちらも大変高価である上、最終目標の性能を有 するハイブリッドシステムの研究開発を、ファイバオプティックジャイロを用いたシステ ム完成後から始めたのでは十分な時間がないと判断されたため、初めから He-Ne リングレ ーザジャイロを用いることにし、これと RTK-GPS を組み合わせたシステムを作製した。GPS が働かないときにジャイロに切り替えるなどの基本的な機能を持たせることができた。

さらに、この位置計測装置を中心とした実験系として、RTK-GPS 基地局、補正情報伝送のための無線通信機、移動用台車等で構成した実験システムを構築した。このような実験

システムを用いて屋外における位置推定実験を行い、He-Ne リングレーザジャイロと RTK-GPS を併用するハイブリッド位置計測の性能評価を行った。

4-5-3 達成状況

ジャイロと加速度センサのみを用いた慣性位置情報検出では加速度・角速度センサのバ イアス・ドリフト誤差が蓄積され続ける。このような誤差を GPS から得られる位置情報を 用いて補正するハイブリッド方式を検討した。また、このような誤差には様々な要因が複 雑に絡んではいるが、適切に誤差解析を行うことでジャイロ性能をより向上させることが できる。これは、RTK-GPS の与えるバイアス誤差を含まない位置情報とジャイロによるバ イアス誤差を含む位置情報をカルマンフィルタによって統合化することで、ジャイロの持 つ誤差の特徴を状態量として抽出し、それを利用して常にジャイロの誤差を補正し、ジャ イロのみを用いて検出する位置情報の誤差をより小さくするという方法である。

まず GPS とのハイブリッド化を行うための方式を比較検討した。GPS と慣性計測部をハ イブリッド化する場合、オープンループ方式とクローズドループ方式が考えられる。

オープンループ方式はハイブリッドシステムにより推定した慣性計測部の位置、速度、 姿勢、方位、センサ等の誤差を慣性演算にフィードバック(補正)しない方式であり、慣 性航法演算とは独立して誤差伝播式により誤差を更新し、出力時に加算する。GPSの突発 的な誤差により慣性航法演算に影響を与えることがない反面、各誤差が大きくなり、誤差 伝播が非線形となるため、拡張カルマンフィルタを使用する等複雑になることが明らかに なった。

クローズドループ方式は、推定した各誤差を慣性航法演算にフィードバックして補正す る方式である。逐次補正を行うため、各誤差は常に最小に抑えられ、各誤差伝播は線形近 似できる。但し、GPS の誤差等により大きな観測誤差が入り誤った推定補正を実行した場 合には慣性航法演算部に影響を及ぼさないよう工夫する必要があることが明らかになった。 また、計算処理部(GPS ハイブリッド演算)に上記方式を実装する方法を検討した。実 装方法には、ルーズカップリングとタイトカップリングが考えられる。ルーズカップリン グは GPS の航法計算結果と慣性装置の基本慣性計算結果とを合せて複合航法演算計算を行 う方法であり、必要なデータは位置、速度、時刻のみなので、どのような GPS 受信機でも インタフェースが容易であるというメリットがある。一方、タイトカップリングは、GPS

のRAWデータを使用し、GPSの航法計算部を慣性装置の中に取り込み、センサデータと一体で航法演算(複合航法演算)計算を行う方法であり、より精度よく計算できることが明らかになった。

以上のように GPS とのハイブリッドを行うための方式を検討し、GPS と慣性計測部をハ イブリッド化する場合、推定した各誤差を慣性航法演算にフィードバックして補正するク ローズドループ方式を用いると、逐次補正を行うために各誤差は常に最小に抑えられ、各 誤差伝播は線形近似できるので、計算処理部(GPS ハイブリッド演算)にこの方式を用い ることにした。カップリング方式はルーズカップリングである。全体のシステムの概要は 図4-5-1の様になる。

慣性位置計測システムのデータ更新時間は15msである。RTK-GPSによる誤差補正がない場合には図4-5-2のように誤差が累積してしまう。

図4-5-1. ハイブリッド位置計測システム。

図4-5-2.純慣性のみによる位置計測結果の例。

これに対して、RTK-GPS により1秒間隔で誤差補正を行うことで図4-5-3のように 誤差を常に±4 cm 以内とすることができた。また、この慣性航法演算部ではカルマンフィ ルタを用いた RTK-GPS との誤差のフィードバック補正も行っており、RTK-GPS からのデー タが跡絶えた場合でも誤差を小さく抑えることができる。

図4-5-3. ハイブリッド位置計測データ。 時間軸11.6~16.8 においてハイブリッド演算をしている。

次に、ハイブリッド位置計測システムの残存誤差要因を解明するために、RTK-GPS による計測を基にしたデータ分析を行った。対象としているハイブリッド位置計測システムは図4-5-1に示したものであり、リアルタイムで内部のデータを外部に出力できるように構成し直したものである。

誤差分析の例として4つの地点間の直線移動を基本とした実験の場合の東西南北方向の 計測誤差の分布を図4-5-4(a)に示す。カルマンフィルタが理論通りに機能して GPS 計測と慣性計測を統合化していれば、図の誤差分布は測定時の運動方向に依存せず、東西 南北方向に正規分布を示すはずである。しかし実測値を精査すると、計測誤差分布が大き く4つの集団に分かれており、明らかに移動方向の影響を示している。

図4-5-4.センサ間の計測時刻差の補正処理による計測誤差分布の改善。

図4-5-5(a)に GPS 計測と慣性計測の位置の差の時間的変化の一例をグラフで示 す。横軸は計測時刻であり、縦軸は経度、緯度の差を示している。GPS 計測の時間間隔が 1秒であるため、この GPS 計測のブランクとなる1秒間は慣性計測で位置推定することに なる。1秒間隔で受信した GPS 計測の位置と慣性計測の差に注目すると、必ずしも慣性計 測の延長上の位置と GPS 計測の位置が一致して誤差が0付近となってはいない。さらに、 その位置誤差には運動方向に依存した特定のバイアスがかかっている。

図4-5-5. GPS 計測と慣性計測の緯度の差、経度の差の時系列変化。

図4-5-6の走行パターンで計測を行い、測定したデータから推定する誤差を緯度経 度方向に表示すると、図4-5-7の様に放射状の傾向を示す。カルマンフィルタが想定 している動作から考えると、少なくとも GPS 計測と慣性計測がほぼ一致する1秒間に1回 は、同時に計測した計測点は原点を中心とした正規分布となるべきである。しかし、図4 -5-7によれば走行パターンの移動方向に依存したドーナツ状のプロットを示し、原点 付近に空白が生じていることがわかる。いいかえると、前述した運動方向に依存した特定 のバイアス誤差が生じていることがわかる。

図4-5-6.性能評価実験における走行パターン。

図4-5-7.緯度方向と経度方向のGPS 計測と慣性計測の差の変化。

この原因は GPS 計測の時刻と慣性計測の時刻の間に実装で生じたわずかな時間差がある ことによる。つまり、GPS 計測の時刻と慣性センサの計測時刻に一定の時間差があり、こ の時間差の間の移動方向に移動速度に比例した距離に対応した一定の誤差が生じている。

図4-5-5(b)に、この計測時刻の時間差を補正した、GPS 計測と慣性計測の位置 の差の時間的変化をグラフで示す。計測時刻の時間差を考慮することにより、1 秒間隔の 互いの計測値がよく一致することがわかる。こうして、GPS と慣性センサの時間差を補正 するような計測値間の補正処理を考案して実行した結果、図4-5-4(b)に示すよう な運動方向に依存しない誤差分布となり、位置精度の向上を確認することができた。

最後に、更新時間の短縮を行った。ハイブリッド位置計測装置の慣性計測データの更新時間は装置内部の He-Ne ジャイロやサーボ加速度計の計測間隔に応じて固定時間となって おり、個々のセンサの更新時間を短縮するためには再度ハイブリッド位置計測装置を設計 し直す必要がある。このため、今回はカルマンフィルタの状態量である、推定位置と推定 速度から次の位置を予測することで更新時間の半減を図った。推定に用いた演算は(式4 -5-1)の様に表わされる。

$$\hat{A}\left(t + \frac{1}{2}\tau\right) = A(t) + \frac{1}{2}\tau V(t) \qquad (\vec{x} \, 4 - 5 - 1)$$

ここでA(t)とV(t)はそれぞれ時刻tにおける位置ベクトル状態量と速度ベクトル状態量、 τは元来の更新時間、 \hat{A} は予測位置ベクトルであり、この式はシステムの更新時間よりも 短い時間間隔分の未来の位置ベクトルを予測することを示す。

図4-5-8に、この予測によって求めた位置測定の例を示す。更新時間を半分として 高速化することができ、ある位置を求めた時点で、その位置と速度の各状態量から次の位 置を予測しながら位置測定を繰り返していることが分かる。この処理を行った際の誤差を 評価するために、図4-5-6の走行パターンでの測定データから、前述の時間補正処理 とともに誤差の評価を行うと図4-5-9のような結果になる。予測処理による誤差の増 加は認められないことがわかる。

図4-5-8. 位置と速度に予測を含む 位置計測の例。

図4-5-9. 位置測定誤差の評価。

以上のように、高性能なレーザジャイロと RTK-GPS を組み合わせたハイブリッド位置計 測装置を製作し、測定実験によりサブテーマの最終目標である位置精度 2.5cm,更新時間 10ms を実現したことを確認した。

4-6 総括

角速度センサチップ実現を目的とした本プロジェクトを通じて、多くの重要な成果を得 ることができた。特に、半導体をレーザ媒質としたリングレーザでのジャイロ機能の実証 は特筆に値する。この大きな成果を中心にし、理論・実験の両面から高精度化・小型化に 関する設計指針を得ることで、角速度センサチップの研究開発は飛躍的に進歩した。

従来、半導体をレーザ媒質とするリングレーザでは、He-Ne リングレーザジャイロの場 合と異なり、時計回り(CW)光と反時計回り(CCW)光が同じ利得を共有することで競合現象や 同期現象等の強い非線形相互作用が生じ、ジャイロ信号であるサニャックビート周波数は 観測できないと考えられてきた。これはレーザ発振理論でよく用いられる Lamb による半古 典的・摂動論的な取り扱いを、レーザ媒質がリング共振器内に一様に分布し、かつ CW・CCW 光がそれぞれ単一で発振した場合に適用した場合の結果である。しかし本研究で開発され た半導体リングレーザジャイロである S-FOG の場合、多モード発振していることやキャビ ティの一部分だけがレーザ媒質になっており、Lamb 理論の適用範囲外の構成となっている。 このような構成を採用することで、CW/CCW 光が両回りでレーザ発振して、サニャックビー ト周波数の観測が実証できた。

しかも S-FOG では様々な物理パラメータを容易に変えることができる利点を持っており、 リング共振器長、半導体レーザ媒質と光ファイバ間の結合効率、導波路損失等多くのパラ メータ依存性を詳しく調べることができる。S-FOG の実験によって、分解能やバイアス安 定性といったジャイロ性能がリング共振器の閉じ込め効率(Q値)に左右されることを明ら かにすることができた。この知見に基づいて S-FOG の高精度化・小型化を行い、はじめリ ング直径が 1m であった S-FOG を直径 7.6cm にまで小型化することに成功した。また、位置 情報検出に必要なバイアス安定性 0.0001 度/秒を満たす高性能 S-FOG も実現することがで きた。

さらに、小型化・高精度化開発の副産物として、レーザ媒質である半導体光増幅器を Er 添加光ファイバに変えて構成したリングレーザジャイロである E-FOG(Er-doped Fiber-Optic Gyroscope)の開発にも成功した。S-FOG の場合、半導体光増幅器と光ファイバの間には現状の実装技術の制約による大きな結合損失が生じるが、Er を添加した光ファイバに替えることで結合損失を大幅に改善することが可能となる。これにより S-FOG よりも高精度なジャイロを作ることができた。E-FOG 開発により高精度かつ低価格化の可能な新しい光ジャイロ実現への方向性を与えることができたといえる。

理論面においても大きな成果を得ることができた。微小な光共振器でのサニャック効果 の理論的な結果によって、通常の半導体レーザの様な微小なチップとしてリングレーザジ ャイロを作製する場合には、レーザキャビティの形状の特別な工夫なしにはジャイロ性能 を向上させることが不可能であることを明らかにした。これは、光の波長に比べてデバイ スサイズがはるかに大きい従来の He-Ne リングレーザジャイロでは問題とならなかった新 しい設計指針であり、リングレーザジャイロをチップで実現する場合に初めて生じる問題 である。この新しい理論による成果として、キャビティの形状が不適切な場合には、たと えリング形状モードを発振させても、低回転角速度時ではサニャック効果が生じないこと を解明できたこと、そしてこれを改善するための共振器形状の具体的な設計方針を提示で きたことは、学術的観点からも大きな成果であるといえる。また、ガウシアン光学法を用 いた2次元レーザのリングモード設計法を開発したことや、半導体リングレーザジャイロ の動的振る舞いを記述する新しいモデル方程式によってレーザ媒質の非線形効果によるロ ックインの回避条件も解明できたことも大きな成果である。

このような理論解析や S-FOG 実験により明らかにされた設計指針を取り入れた、新しい チップ作製プロセスやレーザ発振制御技術も開発することができた。上述の様にジャイロ 性能にはQ値が重要であり、端面の荒れは散乱損失を生じさせるため、出来る限りの平滑 化が必要であることがわかった。これに対して、ICP-RIE 装置の採用、ドライエッチング に用いるガス組成及びエッチング圧力の最適化、エッチングマスクの形成技術、エッチン グマスク形成後の表面洗浄処理技術の開発を行い、ドライエッチングによる滑らかな端面 形成が可能となった。そして、アクティブなレーザ媒質とパッシブな光導波路のモノリシ ックな集積化が可能となるプロセス技術を開発し、既にジャイロ機能が実証されている S-FOG を小型化したリングレーザチップを作製することができた。開発したリングレーザ チップでは Active/Passive 部分が同じ半導体であるため屈折率差が小さく、Butt-Joint 型の接続方式のリングレーザでは、S-FOG に比べて高い結合効率を実現できる。さらに、 Active/Passive構造の導入によって閾値上昇を抑制しながらリング直径を大きくすること ができ、スケールファクタを飛躍的に向上させ、そして全面アクティブ媒質となる従来の 半導体リングレーザに比べてQ値も飛躍的に改善することができる。

この Active/Passive 集積型リングレーザチップを用いて、世界で初めてチップ上で光強 度の回転依存現象の観測に成功したことは非常に大きな成果であった。この光強度の回転 依存現象はウィンキングと呼ばれ、CW と CCW 光の強度が回転に依存して変化する現象であ る。従来の He-Ne リングレーザジャイロではウィンキング現象とジャイロ性能には密接な 関係があることが確かめられている。開発したリングレーザチップでの結果は高精度 He-Ne リングレーザジャイロのような角速度センサとしてのポテンシャルを十分に持つことを示 唆している。

以上をまとめると、各サブテーマの研究課題を順調に克服し、多くの重要な研究結果を 得ることができた。しかし現時点までにチップでのサニャックビート信号の検出には至っ ていない。この点を考慮すると、本プロジェクトの最終目標の達成度は80%といえる。

しかし開発当初の S-FOG でもウィンキング現象が観測されており、この現象を示した S-FOG を開発していくことで、上述のような高精度化・小型化が達成された。一方、上述 のように、導波路損失や結合効率等のQ値に依存するパラメータをさらに改善可能な作 製・制御技術も達成されている。今後も、理論・設計、素子作製、回転実験というフィー ドバックループにより開発を進めれば、当初の目標であった角速度センサチップも十分に 実現可能であると考えられる。

5-1 研究発表・講演等一覧

決裁番号	発表方法	雑誌名・国際会議名	発表者	タイトル	発表(予定)日	査読	状況
2004 波-発 073	国内研究会	「カオスとその周辺」 早稲田コンファレンス	原山 卓久	複雑な波動関数のレーザ発振 ~ カオティックなビリヤード形状の マイクロキャビティレーザの理論 と実験~	2004/11/11~ 2004/10/1	招待	発表済
2004 波-発 074	国内研究会	京大基研短期研究会 「量子系およびマクロ 系におけるカオスと非 線形動力学」	Takahisa Harayama	Chaos and Multi-attractors in Fully Chaotic 2D Microcavity Lasers	2004/12/8~ 2004/12/10	招待	発表済
2004 波-発 075	その他	ATR 研究発表会 2004 技 術講演	原山 卓久	2次元レーザと角速度センサ	2004/11/4~ 2004/11/5	無	発表済
2004 波-発 076	誌上	ATR Journal	原山 卓久	シームレスな位置情報検出を実現 する高精度角速度センサチップの 研究開発	2004/10/1	無	発表済
2004 波-発 081	国内研究会	電子情報通信学会 ワ イドバンドシステム研 究会	Charles Kremer and Keizo Inagaki	Adaptive Pulse Shaping Filter for UWB Spectral Mask Including ITU-R Protection of Passive Service Bands	2004/12/20	無	発表済
2004 波-発 082	国内研究会	京大基研短期研究会 「量子系およびマクロ 系におけるカオスと非 線形動力学」	Susumu Shinohara, Satoshi Sunada, Takahisa Harayama and Kensuke Ikeda (Ritsumeikan Univ.)	Mode Expansion Description of Stadium-cavity Laser Dynamics	2004/12/8~ 2004/12/10	有	発表済
2004 波-発 084	国内研究会	京大基研短期研究会 「量子系およびマクロ 系におけるカオスと非 線形動力学」	Satoshi Sunada, Takahisa Harayama and Kensuke Ikeda (Ritsumeikan Univ.)	Multi-mode Lasing in 2D Fully Chaotic Cavity Lasers	2004/12/8~ 2004/12/10	無	発表済
2004 波-発 087	誌上	Physical Review E	Susumu Shinohara, Satoshi Sunada, Takahisa Harayama and Kensuke Ikeda (Ritsumeikan Univ.)	Mode Expansion Description of Stadium-cavity Laser Dynamics	2005/3/1	有	発表済

決裁番号	発表方法	雑誌名・国際会議名	発表者	タイトル	発表(予定)日	査読	状況
2004 波-発 118	国際会議	NCRICCOC Workshop on Microcavity Lasers	Takahisa Harayama	Chaos and Multi-attractors in Fully Chaotic 2D Microcavity Lasers	2005/2/22~ 2005/2/25	招待	発表済
2004 波-発 123	誌上	Physical Review E	Satoshi Sunada, Takahisa Harayama and Kensuke Ikeda (Ritsumeikan Univ.)	Multiple-mode Lasing in Two-dimensional Fully Chaotic Cavity Lasers	2005/4/18	有	発表済
2004 波-発 138	国際会議	The 23th International Conference on Defects in Semiconductors	Norihiko Kamata (Univ. of Saitama), Shanmugam Saravanan, J. M. Zanardi Ocampo, Pablo Vaccaro and Yasuhiko Arakawa (Tokyo Univ.)	Nonradiative Centers in InAs Quantum Dots Revealed by Two-wavelength Excited Photoluminescence	2005/7/24~ 2005/7/29	有	発表済
2004 波-発 144	国際会議	2005 SIAM Conference on Applications of Dynamical Systems	Susumu Shinohara	The Diagram for Shearless Torus Breakup and Separatrix Reconnection in the Quadratic Nontwist Map	2005/5/22~ 2005/5/26	有	発表済
2004 波-発 145	国際会議	2005 SIAM Conference on Applications of Dynamical Systems	Susumu Shinohara, Satoshi Sunada, Takahisa Harayama and Kensuke Ikeda (Ritsumeikan Univ.)	Mode dynamics in 2D microcavity lasers	2005/5/22~ 2005/5/26	有	発表済
2005 波-発 003	国際会議	Pacific Rim Conference on Lasers and Electro-Optics 2005	Hitoshi Shimizu and Shanmugam Saravanan	InAs Quantum Dot Lasers on GaAs Substrate with 12 Layers	2005/7/11~ 2005/7/15	有	発表済
2005 波-発 011	国内大会	第 66 回応用物理学会 学術講演会	清水均ShanmugamSaravanan吉田順自井部紗代子(古河電工)横内則之(古河電工)	低しきい値電流密度多層化量子ドットレーザ	2005/9/7~ 2005/9/11	有	発表済
2005 波-発 012	誌上	Physical Review A	Takahisa Harayama, Satoshi Sunada and Kensuke Ikeda (Ritsumeikan Univ.)	Theory of Two-dimensional Microcavity Lasers	2005/6/6	有	発表済

決裁番号	発表方法	雑誌名・国際会議名	発表者	タイトル	発表(予定)日	査読	状況
2005 波-発 013	国際会議	SPIE Microelectronics, MEMS, and Nanotechnology 2005	Shanmugam Saravanan, Hitoshi Shimizu and Pablo Vaccaro	Long Wavelength Photoluminescence Emission from InAs Quantum Dots Embedded in GaAs Matrix	2005/12/11~ 2005/12/14	有	発表済
2005 波-発 014	国際会議	Conference on Lasers and Electro-Optics/Quant um Electronics & Laser Conference 2005	Takehiro Fukushima (ATR/Okayama Pre. Univ.), Tomoko Tanaka and Takahisa Harayama	Unidirectional Beam Emission from Confocal Quasi-Stadium Laser Diodes	2005/5/22~ 2005/5/27	有	発表済
2005 波-発 015	国内大会	第 52 回応用物理学関 係連合講演会	福嶋 丈浩(ATR/岡山県立大) 田中 智子 原山 卓久	InGaAsP 歪 MWQ 擬似スタジアム型 半導体レーザの単一横モード動作	2005/3/29~ 2005/4/1	有	発表済
2005 波-発 018	誌上	IEEE Transactions on Circuits and Systems	Takashi Ohira	Rigorous Q-Factor Formulation for One- and Two-Port Passive Linear Networks From an Oscillator Noise Spectrum Viewpoint	2005/12/1	有	発表済
2005 波-発 019	国際会議	6 th International Summer School and Conference "Let's Face Chaos through Nonlinear Dynamics"	Takahisa Harayama	Theory and Application of 2D Microcavity Lasers	2005/6/26~ 2005/7/10	招待	発表済
2005 波-発 020	国内大会	第 66 回応用物理学会 学術講演会	Shanmugam Saravanan, Hitoshi Shimizu and Pablo Vaccaro	Effect of Growth Interruption during the Growth of InAs Quantum Dots on GaAs (100) Substrate	2005/9/7~ 2005/9/11	有	発表済
2005 波-発 029	誌上	Japanese Journal of Applied Physics	Shanmugam Saravanan, Hitoshi Shimizu and Pablo Vaccaro	Strain Reduction and Long Wavelength Emission from InAs/GaAs QDs by using Growth Interruption in MBE	2006/4/7	有	発表済

決裁番号	発表方法	雑誌名・国際会議名	発表者	タイトル	発表(予定)日	査読	状況
2005 波-発 035	国内大会	2005 年電子情報通信学 会ソサイエティ大会	野戸 広之 稲垣 惠三 田 村 修一 原山 卓久	半導体ファイバオプティックジャ イロ(S-F0G)の回転に依存した光 強度の変化	2005/9/20~ 2005/9/23	有	発表済
2005 波-発 036	国内大会	2005 年電子情報通信学 会ソサイエティ大会	田村 修一 稲垣 惠三 野 戸 広之 原山 卓久	半導体光増幅器と光ファイバを用 いたリングレーザの静特性	2005/9/20~ 2005/9/23	有	発表済
2005 波-発 037	誌上	Physical Review A	Satoshi Sunada and Takahisa Harayama	Sagnac Effect in Resonant Microcavities	2006/8/10	有	発表済
2005 波-発 038	国内大会	2005 年電子情報通信学 会ソサイエティ大会	砂田 哲 原山 卓久	共振器モードに対するサニャック 効果	2005/9/20~ 2005/9/23	有	発表済
2005 波-発 039	国内大会	2005 年電子情報通信学 会ソサイエティ大会	大平 孝 荒木 純道(東京工 業大)	多端子発振回路の安定動作条件: 黒川判別式の拡張	2005/9/20~ 2005/9/23	有	発表済
2005 波-発 040	誌上	Journal of Crystal Growth	Shanmugam Saravanan and Hitoshi Shimizu	Long Wavelength and Narrow Photoluminescence Linewidth from InAs Quantum Dots with GaAs Cap Layer on GaAs (100) Substrate	2005/12/20	有	発表済
2005 波-発 041	国内大会	日本物理学会 2005 年 秋季大会	Muhan Choi, Tomoko Tanaka, Takehiro Fukushima (ATR/Okayama Pref. Univ.) and Takahisa Harayama	Modal Control by Using Multi-Electrode in Two-dimensional Quasi-Stadium Micro-Cavity Lasers	2005/9/19~ 2005/9/22	有	発表済
2005 波-発 042	国内大会	第 66 回応用物理学会 学術講演会	田中 智子 Muhan Choi 福 嶋 丈浩 (ATR/岡山県立大) 原山 卓久	多電極構造による擬似スタジアム 型半導体レーザの出力方向制御	2005/9/7~ 2005/9/11	有	発表済
2005 波-発 043	国内大会	日本物理学会 2005 年 秋季大会	篠原 晋 Hakan E. Tureci (Yale Univ.) 砂田 哲 原 山 卓久 A. Douglas Stone (Yale Univ.)	二次元微小共振器レーザーモデル のシミュレーション:発振特性の 共振器形状依存	2005/9/20~ 2005/9/23	有	発表済
2005 波-発 045	国内大会	2005 年電子情報通信学 会ソサイエティ大会	稲垣 惠三 田村 修一 野 戸 広之 原山 卓久	半導体ファイバオプティックジャ イロ (S-FOG) による回転角速度 の検出	2005/9/20~ 2005/9/23	有	発表済

決裁番号	発表方法	雑誌名・国際会議名	発表者	タイトル	発表(予定)日	査読	状況
2005 波-発 049	誌上	Japanese Journal of Applied Physics	Hitoshi Shimizu, Shanmugam Saravanan, Junji Yoshida, Sayoko Ibe (Furukawa Elec.) and Noriyuki Yokouchi (Furukawa Elec.)	InAs Quantum Dot Lasers with Extremely Low Threshold Current Density (7A/cm2/Layer)	2005/8/19	有	発表済
2005 波-発 058	誌上	Applied Physics Letters	Hitoshi Shimizu and Shanmugam Saravanan	Buffer-Material Dependence of InAs Quantum Dots on GaAs Substrate	2006/1/26	有	発表済
2005 波-発 059	誌上	Applied Physics Letters	Takehiro Fukushima (ATR/Okayama Pre. Univ.), Tomoko Tanaka and Takahisa Harayama	Unidirectional Beam Emission from Strained InGaAsP Multiple-quantum-well Quasistadium Laser Diodes	2005/4/19	有	発表済
2005 波-発 067	国内研究会	電子情報通信学会 レ ーザ・量子エレクトロ ニクス研究会	清水 均 Shanmugam Saravanan 吉田 順自 井 部 紗代子(古河電工) 横内 則之(古河電工)	長波長帯多層化量子ドットの低閾 値電流密度発振	2005/12/9	無	発表済
2005 波-発 069	国内大会	第 66 回応用物理学会 学術講演会	福嶋 丈浩(ATR/岡山県立大) 内橋 啓介(岡山県立大) 田 中 智子 原山 卓久	GaAs 系擬似スタジアム型半導体レ ーザの室温 CW 動作	2005/9/7~ 2005/9/11	有	発表済
2005 波-発 072	国際会議	2006 IEEE 18 th International Conference on Indium Phosphide & Related Materials	Hitoshi Shimizu and Shanmugam Saravanan	Comparison of Buffer Material for InAs Quantum Dots on GaAs Substrate	2006/5/7~ 2006/5/11	有	発表済
2005 波-発 077	誌上	Applied Physics Letters	Hitoshi Shimizu, Shanmugam Saravanan, Junji Yoshida, Sayoko Ibe (Furukawa Elec.) and Noriyuki Yokouchi (Furukawa Elec.)	Comparison between Multilayerd InAs Quantum Dot Lasers with Different Dot Density	2006/6/15	有	発表済

決裁番号	発表方法	雑誌名・国際会議名	発表者	タイトル	発表(予定)日	査読	状況
2005 波-発 078	国際会議	2006 IEEE 18 th International Conference on Indium Phosphide & Related Materials	Hitoshi Shimizu, Shanmugam Saravanan, Junji Yoshida, Sayoko Ibe (Furukawa Elec.) and Noriyuki Yokouchi (Furulawa Elec.)	Multilayered InAs Quantum Dot Lasers with Different Dot Density	2006/5/7~ 2006/5/11	有	発表済
2005 波-発 082	国内大会	第 53 回応用物理学関 係連合講演会	清水均ShanmugamSaravanan吉田順自井部紗代子(古河電工)横内則之(古河電工)	多層化量子ドットレーザのドット 密度依存性	2006/3/22~ 2006/3/26	有	発表済
2005 波-発 083	国内大会	第 53 回応用物理学関 係連合講演会	清水 均 Shanmugam Saravanan	InAs 量子ドットのバッファー層材 料依存性	2006/3/22~ 2006/3/26	有	発表済
2005 波-発 084	誌上	Japanease Journal of Applied Physics	Hitoshi Shimizu, Shanmugam Saravanan, Junji Yoshida, Sayoko Ibe (Furukawa Elec.) and Noriyuki Yokouchi (Furukawa Elec.)	Long-Wavelength Multilayered InAs Quantum Dot Lasers	2007/2/1	有	発表済
2005 波-発 086	国内研究会	第3回超高速光エレク トロニクス研究会	原山 卓久	二次元マイクロデイスクレーザの 光通信・光計測への応用	2005/11/15~ 2005/11/16	無	発表済
2005 波-発 087	誌上	Applied Physics Letters	Takehiro Fukushima (ATR/Okayama Pref. Univ.), Tomoko Tanaka and Takahisa Harayama	Ring and Axis Mode Switching in Multielectrode Strained InGaAsP Multiple-Quantum-Well Quasistadium Laser Diodes	2005/10/31	有	発表済
2005 波-発 089	国際会議	The 2006 IEEE 18 th Conference on Indium Phosphide and Related Materials	Shanmugam Saravanan and Hitoshi Shimizu	Stacking of InAs/GaAs QDs with Less Strain by using Growth Interruption	2006/5/7~ 2006/5/11	有	発表済
2005 波-発 090	国内研究会	電子情報通信学会 レ ーザ・量子エレクトロ ニクス研究会	福嶋 丈浩(ATR/岡山県立大) 原山 卓久	2次元半導体レーザの発振特性	2005/12/9	無	発表済

決裁番号	発表方法	雑誌名・国際会議名	発表者	タイトル	発表(予定)日	査読	状況
2005 波-発 096	国内大会	第 53 回応用物理学会 関係連合講演会	Shanmugam Saravanan and Hitoshi Shimizu	Influence of Growth Interruption in Stacked InAs/GaAs Quantum Dots	2006/3/22~ 2006/3/26	有	発表済
2005 波-発 097	誌上	Physical Review A	Takehiro Fukushima (ATR/Okayama Pref. Univ.), Takahisa Harayama and Jan Wiersig (Univ of Bremen)	Ray-Wave Correspondence in an Unstable Quasi-Stadium Laser Resonator	2006/1/1	有	発表済
2005 波-発 100	その他	1. Monthly Seminar of the Center for Controlling Optical Chaos, 2. Quantum Transport Seminar	Martina Hentschel	Optical Microresonators: Ray-Wave Correspondence Put to Test	2005/11/23~ 2005/11/25	無	発表済
2005 波-発 110	国内大会	日本物理学会第61回 年次大会	篠原 晋 原山 卓久	スタジアム型共振器レーザーにお ける指向的発振	2006/3/27~ 2006/3/30	有	発表済
2005 波-発 111	誌上	Nonlinear Phenomenon in Complex Systems	Satoshi Sunada, Takahisa Harayama and Kensuke Ikeda (Ritsumeikan Univ.)	Numerical Simulations of Two-dimensional Microcavity Lasers; Nonlinear Dynamics of Whispering Gallery Modes	2007/7/10	有	発表済
2005 波-発 112	国内大会	日本物理学会第 61 回 年次大会	田中 智子 Martina Hentschel (ATR/Univ. of Regensburg) 福嶋 丈浩 (ATR/岡山県立大) 原山 卓 久	オーバルビリアード型共振器半導 体レーザからの放射パターン	2006/3/27~ 2006/3/30	有	発表済
2005 波-発 117	国内大会	2006 年電子情報通信学 会総合大会	田村 修一 野戸 広之 稲 垣 惠三 原山 卓久	半導体ファイバオプティックジャ イロ(S-FOG)のスケールファクタ の経路長及び面積依存性に関する 実験	2006/3/24~ 2006/3/27	有	発表済
2005 波-発 130	国内大会	2006年電子情報通信学 会総合大会	野戸 広之 稲垣 惠三 田 村 修一 原山 卓久	S-FOG を用いた半導体 RLG の小型 化の検討	2006/3/24~ 2006/3/27	有	発表済
2005 波-発 131	誌上	Applied Physics Letters	Muhan Choi, Tomoko Tanaka, Takehiro Fukushima (Okayama Pref. Univ.) and Takahisa Harayama	Control of Directional Emission in Quasistadium Microcavity Laser Diodes with Two-Electrodes	2006/5/24	有	発表済

決裁番号	発表方法	雑誌名・国際会議名	発表者	タイトル	発表(予定)日	査読	状況
2005 波-発 132	国際会議	Conference on Laser and Electro-Optics/Quant um Electronics Laser Conference 2006	Takehiro Fukushima (ATR/Okayama Pref. Univ.) and Takahisa Harayama	Mode Switching by Optical Injection in Tandem Quasi- Stadium Laser Diodes	2006/5/21~ 2006/5/26	有	発表済
2006 波-発 002	国内大会	2006年電子情報通信学 会総合大会	福嶋 丈浩(ATR/岡山県立大) 原山 卓久	擬似スタジアム型半導体レーザの 光注入によるモードスイッチング	2006/3/24~ 2006/3/27	有	発表済
2006 波-発 013	国際会議	International Conference on the Frontiers of Nonlinear and Complex Systems	Takahisa Harayama	Theory and Application of 2D Microcavity Lasers	2006/5/24~ 2006/5/26	有	発表済
2006 波-発 029	国際会議	18 th International Conference on Optical Fiber Sensors	Keizo Inagaki, Shuichi Tamura, Hiroyuki Noto and Takahisa Harayama	Sagnac Beat Signals Observed in Semiconductor Fiber-Optic Ring Laser Gyroscope	2006/10/23~ 2006/10/27	有	発表済
2006 波-発 010	国際会議	8 th International Conference on Transparent Optical Networks (ICTON2006)	Muhan Choi, Tomoko Tanaka, Takehiro Fukushima (ATR/Okayama Pref. Univ.) and Takahisa Harayama	Control of Directional Emission in Two-dimensional Quasi-Stadium Micro-Cavity Laser Diodes with Two-Electrodes	2006/6/18~ 2006/6/22	有	発表済
2006 波-発 011	誌上	Physical Review A	Susumu Shinohara, Takahisa Harayama, Hakan E. Tureci (Yale Univ.) and Douglas A. Stone (Yale Univ.)	The Ray-wave Correspondence in Stadium-cavity Lasers	2006/9/26	有	発表済
2006 波-発 012	国際会議	8 th International Conference on Transparent Optical Networks	Susumu Shinohara, Takahisa Harayama, Hakan E. Tureci (Yale Univ.) and Douglas A. Stone (Yale Univ.)	Highly Directional Emission in Stadium-Cavity Lasers	2006/6/18~ 2006/6/22	有	発表済
2006 波-発 012	国際会議	8 th International Conference on Transparent Optical Networks	Susumu Shinohara, Takahisa Harayama, Hakan E. Tureci (Yale Univ.) and Douglas A. Stone (Yale Univ.)	Highly Directional Emission in Stadium-Cavity Lasers	2006/6/18~ 2006/6/22	有	発表済

決裁番号	発表方法	雑誌名・国際会議名	発表者	タイトル	発表(予定)日	査読	状況
2006 波-発 013	国際会議	Dynamics Days Asia Pacific 4	Susumu Shinohara, Takahisa Harayama, Hakan E. Tureci (Yale Univ.) and Douglas A. Stone (Yale Univ.)	Highly Directional Emission in Stadium-Cavity Lasers	2006/7/12~ 2006/7/14	有	発表済
2006 波-発 014	国際会議	8 th International Conference on Transparent Optical Networks	Yutaka Nakae, Takehiro Fukushima (ATR/Okayama Pre. Univ.), Tomoko Tanaka and Takahisa Harayama	Ring and Axis Mode Switching in Quasi-stadium Laser Diodes with Multi-electrodes	2006/6/18~ 2006/6/22	有	発表済
2006 波-発 015	国際会議	8 th International Conference on Transparent Optical Networks	Satoshi Sunada and Takahisa Harayama	Sagnac Effect in Resonant Microcavities	2006/6/18~ 2006/6/22	有	発表済
2006 波-発 016	国際会議	18 th International Conference on Optical Fiber Sensors	Satoshi Sunada and Takahisa Harayama	Sagnac Effect in Resonant Microcavities	2006/10/23~ 2006/10/27	有	発表済
2006 波-発 018	国際会議	8 th International Conference on Transparent Optical Networks	Takahiko Sasaki, Takehiro Fukushima (ATR/Okayama Pre. Univ.), Tomoko Tanaka and Takahisa Harayama	Locking of Two Modes and Unidirectional Beam Emission in Quasi-stadium Laser Diodes	2006/6/18~ 2006/6/22	有	発表済
2006 波-発 019	誌上	Physica B	Norihiko Kamata (Saitama Univ.), Shanmugam Ssaravanan, J. M. Zanardi Ocampo, Pablo Vaccaro and Yasuhiko Arakawa (Univ. of Tokyo)	Nonradiative Centers in InAs Quantum Dots Revealed by Two-wavelength Excited Photoluminescence	2006/4/1	有	発表済
2006 波-発 022	国際会議	Dynamics Days Asia Pacific 4	Takahisa Harayama	Nonlinear Dynamics and Optical Sensing Application of 2D Microcavity Lasers	2006/7/12~ 2006/7/14	無	発表済

決裁番号	発表方法	雑誌名・国際会議名	発表者	タイトル	発表(予定)日	査読	状況
2006 波-発 023	国際会議	Dynamics Days Asia Pacific 4	Muhan Choi, Tomoko Tanaka, Takehiro Fukushima (ATR/Okayama Pre. Univ.) and Takahisa Harayama	Control of Emission Light in Quasi-Stadium Micro-Cavity Laser Diodes	2006/7/12~ 2006/7/14	有	発表済
2006 波-発 030	国際会議	8 th International Conference on Transparent Optical Networks	Tomoko Tanaka, Martina Hentschel (Regensburg Univ.), Takehiro Fukushima (ATR/Okayama Pre. Univ.) and Takahisa Harayama	Directional Emission Patterns from the Oval-Billiard Microcavity Laser Diodes	2006/6/18~ 2006/6/22	無	発表済
2006 波-発 031	国際会議	Dynamics Days Asia Pasific 4	Tomoko Tanaka, Martina Hentschel (Regensburg Univ.), Takehiro Fukushima (ATR/Okayama Pre. Univ.) and Takahisa Harayama	Shape Parameter Dependence of Emission Patterns from the Oval-Billiard Microcavity Laser Diodes	2006/7/12~ 2006/7/14	有	発表済
2006 波-発 035	国内研究会	電子情報通信学会 光 エレクトロニクス研究 会	砂田 哲 原山 卓久	微小共振器における Sagnac 効果	2006/7/27~ 2006/7/28	無	発表済
2006 波-発 036	国際会議	International Conference on Quantum Mechanics and Chaos	Susumu Shinohara, Takahisa Harayama, Hakan E. Tureci (Yale Univ.) and Douglas A. Stone (Yale Univ.)	Directional Lasing Emission from Stadium-shaped Microcavities	2006/9/19~ 2006/9/21	有	発表済
2006 波-発 048	国内大会	2006 年電子情報通信学 会ソサイエティ大会	田村 修一 稲垣 惠三 野 戸 広之 原山 卓久	半導体ファイバオプティックジャ イロ(S-F0G)のスケールファクタ の波長依存性に関する実験	2006/9/19~ 2006/9/22	無	発表済
2006 波-発 049	国内研究会	電子情報通信学会 マ イクロ波,光エレクト ロニクス,電磁界理論 研究会	田村 修一 稲垣 惠三 野 戸 広之 原山 卓久	半導体ファイバオプティックジャ イロ(S-FOG)による回転角速度検 出及びスケールファクタの実験的 検討	2006/7/27~ 2006/7/28	無	発表済

決裁番号	発表方法	雑誌名・国際会議名	発表者	タイトル	発表(予定)日	査読	状況
2006 波-発 050	国内大会	2006 年電子情報通信学 会ソサイエティ大会	野戸 広之 福嶋 丈浩(ATR/ 岡山県立大) 原山 卓久	ジャイロセンサ用半導体リングレ ーザの設計とその基本特性の測定	2006/9/19~ 2006/9/22	有	発表済
2006 波-発 051	国際会議	International Conference on Quantum Mechanics and Chaos	Muhan Choi, Tomoko Tanaka, Takehiro Fukushima (ATR/Okayama Pre. Univ.) and Takahisa Harayama	Control and Switching of Light Emission in Quasistadium Microcavity Laser Diodes by using Two Electrodes	2006/9/19~ 2006/9/21	有	発表済
2006 波-発 052	国際会議	International Conference on Quantum Mechanics and Chaos	Yutaka Nakae, Takehiro Fukushima (ATR/Okayama Pre. Univ.), Tomoko Tanaka and Takahisa Harayama	Mode Switching by Multi-electrodes and Tandem Quasi-stadium Laser Diodes	2006/9/19~ 2006/9/21	有	発表済
2006 波-発 056	国際会議	International Conference on Quantum Mechanics and Chaos	Satoshi Sunada and Takahisa Harayama	Sagnac Effect in Rotating Resonant Microcavities	2006/9/19~ 2006/9/21	無	発表済
2006 波-発 058	国際会議	Dynamical Chaos and Non-equilibrium Statistical Mechanics: From Rigorous Results to Applications in Nano-systems	Takahisa Harayama	Complexity of 2D Microcavity Lasers	2006/8/1~ 2006/9/30	有	発表済
2006 波-発 059	国際会議	International Conference on Quantum Mechanics and Chaos	Takahisa Harayama	Theory, Experiments, and Applications of 2D Microcavity Lasers	2006/9/19~ 2006/9/21	有	発表済
2006 波-発 061	国際会議	International Conference on Quantum Mechanics and Chaos	Takahiko Sasaki, Takehiro Fukushima (ATR/Okayama Pre. Univ.), Tomoko Tanaka and Takahisa Harayama	Locking of Two Modes in InGaAsP Multiple-quantum-well Quasi-stadium Laser Resonators	2006/9/19~ 2006/9/21	有	発表済

決裁番号	発表方法	雑誌名・国際会議名	発表者	タイトル	発表(予定)日	査読	状況
2006 波-発 067	誌上	共立出版、複雑系叢書、 第5分冊 "複雑さと法 則"、前田恵一編集 第 7章	原山 卓久	量子カオスの根本問題と実験によ る新展開	2006/11/1	有	発表済
2006 波-発 070	国際会議	The 19 th Annual Meeting of the IEEE Lasers and Electro-Optics Society	Takehiro Fukushima (ATR/Okayama Pref. Univ.) and Takahisa Harayama	Lowest Order Ring Mode Lasing in Confocal Quasi-Stadium Laser Diodes	2006/10/29~ 2006/11/2	有	発表済
2006 波-発 075	国際会議	Materials Science and Materials Mechanics at the Nanoscale	Takahisa Harayama	Two-dimensional Microcavity Lasers	2006/11/19~ 2006/11/23	有	発表済
2006 波-発 078	国際会議	Novacella Autumn Conference 2006 Chaos and Complex Systems	Takahisa Harayama	Theory and Applications of 2D Microcavity Lasers	2006/10/9~ 2006/10/12	有	発表済
2006 波-発 079	国際会議	the 19 th Annual Meeting of the IEEE Lasers and Electro-Optics Society	Tomoko Tanaka, Martina Hentschel (Regensburg Univ.), Takehiro Fukushima (ATR/Okayama Pref. Univ.) and Takahisa Harayama	Morphological Dependence of Emission Patterns from Oval-Billiard Microcavity Laser Diodes	2006/10/29~ 2006/11/2	有	発表済
2006 波-発 092	国際会議	International Conference on Quantum Mechanics and Chaos	Tomoko Tanaka, Martina Hentschel (Regensburg Univ.), Takehiro Fukushima (ATR/Okayama Pre. Univ.) and Takahisa Harayama	Far Field Emission Patterns from Oval-Billiard Microcavity laser Diodes	2006/9/19~ 2006/9/21	有	発表済
0213061129001	誌上	Physical Review E	篠原 晋 原山 卓久	Signature of ray chaos in quasi-bound wavefunctions for a stadium-shaped dielectric cavities	2007/3/1	有	発表済

決裁番号	発表方法	雑誌名・国際会議名	発表者	タイトル	発表(予定)日	査読	状況
0213061211001	国内研究会	電子情報通信学会 レ ーザ・量子餌レクトロ ニクス研究会	田村 修一 稲垣 惠三 野 戸 広之 原山 卓久	SOA を用いた半導体ファイバオプ ティックリングレーザジャイロ (S-FOG)の回転実験による検討	2006/12/15	無	発表済
0213070112004	国内大会	2007年電子情報通信学 会総合大会	大平 孝 荒木 純道	発振回路の NINO/NISO モデル	2007/3/20~ 2007/3/23	有	発表済
0213070118006	国内大会	2007 年電子情報通信学 会総合大会	田村 修一 砂田 哲 稲垣 惠三 原山 卓久	半導体ファイバオプティックジャ イロ (S-F0G)の Sagnac ビートスペ クトルの検出に関する検討	2007/3/20~ 2007/3/23	無	発表済
0213070122001	国内大会	2007 年電子情報通信学 会総合大会	野戸 広之 稲垣 惠三 田 村 修一 原山 卓久	半導体光ファイバジャイロ (S-F0G)の低回転時の強度変化範 囲の測定	2007/3/20~ 2007/3/23	無	発表済
0213070123001	その他	応用光学懇談会講演会 と日本光学会関西講演 会の合同講演会	原山 卓久	2次元マイクロキャビティレー ザ:波動カオスと半導体レーザジ ャイロ	2007/1/30	招待	発表済
0213070123002	その他	第8回 MEMS 技術分科会	原山 卓久	半導体リングレーザジャイロ	2007/2/20	招待	発表済
0213070123003	その他	情報機構セミナー	原山 卓久	光ジャイロの半導体レーザへの新 展開	2007/2/28	招待	発表済
0213070123004	国内大会	日本物理学会 2007 年 春季大会	篠原 晋 原山 卓久	スタジアム型共振器における光 線・波動対応	2007/3/18~ 2007/3/21	有	発表済
0213070312001	誌上	Physical Review Letters	Tomoko Tanaka, Martina Hentschel (ATR/Univ. Regensburg), Takehiro Fukushima (ATR/Okayama Pref. Univ.) and Takahisa Harayama	Classical Phase Space Revealed by Coherent Light	2007/1/19	有	発表済
0213070314001	国内大会	第 54 回応用物理学関 係連合講演会	竹花 広輝 (ATR/甲南大) 佐々木 敬彦 中榮 穣 福 嶋 丈浩 (ATR/岡山県立大) 原山 卓久 杉村 陽 (甲南 大)	擬似スタジアム型半導体レーザ内 部の発振モードの観察	2007/3/27~ 2007/3/30	無	発表済

決裁番号	発表方法	雑誌名・国際会議名	発表者	タイトル	発表(予定)日	査読	状況
0213070319001	国際会議	Conference on Laser and Electro-Optics/Quant um Electronics Laser Conference 2007 (CLEO/QELS' 07)	Takehiro Fukushima(ATR/Okayama Pref. Univ.) and Takahisa Harayama	Axis and Ring Mode Switching in Multi-Electrode GaAs Quasi-Stadium Laser Diodes	2007/5/6~ 2007/5/11	有	発表済
0213070328001	国際会議	The 7 th Pacific Rim Conference on Laser and Electro-Optics	Takahisa HarayamaO, Takehiro Fukushima (ATR/Okayama Pref. Univ.) and Takahisa Harayama	Alternate oscillations with π phase difference in Quasi-Stadium Laser Diode	2007/8/26~ 2007/8/31	有	発表済
0213070328002	国際会議	The 7 th Pacific Rim Conference on Laser and Electro-Optics	Takahisa Harayama and Satoshi Sunada	Rotating optical microcavities	2007/8/26~ 2007/8/31	有	発表済
0213070328003	誌上	Progress of Theoretical Physics Supplement	Takahisa Harayama, Takehiro Fukushima (ATR/Okayama Pref. Univ.), Satoshi Sunada and Kensuke S. Ikeda (Ritsumeikan Univ.)	Chaos and multi-attractors in fully chaotic 2D microcavity lasers	2007/4/1	有	発表済
0213070328005	国際会議	SPIE Optics East	Shuichi Tamura, Keizo Inagaki, Hiroyuki Noto and Takahisa Harayama	Experimental Investigation of Sagnac Beat Signals using Semiconductor Fiber-Optic Ring Laser Gyroscope (S-FOG) based on Semiconductor Optical Amplifier (SOA)	2007/9/9~ 2007/9/12	有	発表済
0213070330003	誌上	Optics Letters	Takehiro Fukushima (Okayama Pref. Uiv.), Tomoko Tanaka and Takahisa Harayama	High quality lowest loss mode lasing in GaAs unstable resonator quasi-stadium laser diodes	2007/11/20	有	発表済
0213070424002	国際会議	International Workshop on Quantum Dots and Laser Applications	Shanmugam Saravanan and Takahisa Harayama	Effect of growth interruption during the growth of InAs/GaAs QDs	2007/7/12~ 2007/7/14	有	発表済

決裁番号	発表方法	雑誌名・国際会議名	発表者	タイトル	発表(予定)日	査読	状況
0213070424003	国際会議	9 th International Conference on Transparent Optical Networks	Takahiko Sasaki, Takehiro Fukushima (ATR/Okayama Pre. Univ.), Yutaka Nakae, Muhan Choi and Takahisa Harayama	Optical Control of Ring Modes Using Tandem Quasi-Stadium Laser Diodes	2007/7/1~ 2007/7/5	有	発表済
0213070424004	国際会議	9 th International Conference on Transparent Optical Networks	Takahisa Harayama	Theory and applications of 2D microcavity lasers	2007/7/1~ 2007/7/5	有	発表済
0213070424005	国際会議	9 th International Conference on Transparent Optical Networks	Yutaka Nakae, Takehiro Fukushima, Takahiko Sasaki and Takahisa Harayama	Beam mode observation in quasi-stadium laser diodes	2007/7/1~ 2007/7/5	有	発表済
0213070424006	国際会議	9 th International Conference on Transparent Optical Networks	Satoshi Sunada, Takahisa Harayama and Tomohiro Miyasaka	Generalized Sagnac effect in rotating optical cavities	2007/7/1~ 2007/7/5	有	発表済
0213070703004	国内大会	2007 年電子情報通信学 会ソサエティ大会	 石田 智己(立命館大学) 田 村 修一 砂田 哲 稲垣 惠 三 原山 卓久 齊藤 茂 (立命館大学) 	半導体ファイバオプティックジャ イロ(S-FOG)における Sagnac ビー トスペクトル線幅と共振器長との 関係	2007/9/10~ 2007/9/14	無	発表済
0213070703005	国内大会	2007 年秋季 第 68 回応 用物理学会学術講演会	S.Saravanan and T.Harayama	Long wavelength emission from InAs/GaAs quantum dots	2007/9/4~ 2007/9/8	有	発表済
0213070711001	国内大会	2007 年電子情報通信学 会ソサイエティ大会	稻垣 惠三 山本 貴之 (同志 社大学) 原山 卓久	半導体ファイバオプティックジャ イロ (S-FOG) による回転方向の検 出方法に関する検討	2007/9/10~ 2007/9/14	有	発表済
0213070713001	国内大会	電子情報通信学会 非 線形問題研究会	田中 智子 Martina Hentshel (ドレスデン大学) 福嶋 丈 浩 (ATR/岡山県立大学) 原 山 卓久	オーバルビリアード型共振器半導体レーザからの放射パターン	2007/8/6~ 2007/8/7	無	発表済

決裁番号	発表方法	雑誌名・国際会議名	発表者	タイトル	発表(予定)日	査読	状況
0213070713002	国内大会	電子情報通信学会 非 線形問題研究会	佐々木 敬彦 中榮 穰 福 嶋 丈浩(ATR/岡山県立大) 原山 卓久	電流と光注入によって発振させた 擬似スタジアム型半導体レーザの ビーム方向制御	2007/8/6~ 2007/8/7	無	発表済
0213071126001	国際会議	19 th International Conference on Optical Fibre Sensors	Tomoki Ishida, Shuichi Tamura, Satoshi Sunada, Keizo Inagaki, Takahisa Harayama and Shigeru Saito (Ritsumeikan University)	Improvement of accuracy of angular velocity detection in semiconductor fiberoptic ring laser gyroscope	2008/4/14~ 2008/4/18	有	発表済
0213070424007	国際会議	9 th International Conference on Transparent Optical Networks	Muhan Choi, Takehiro Fukushima(ATR/Okayama Pref. Univ.) and Takahisa Harayama	Two Mode Interactions in Quasi-Stadium Laser Diodes	2007/7/1~ 2007/7/5	有	発表済
0213070514001	国際会議	9 th International Conference on Transparent Optical Networks	Susumu Shinohara and Takahisa Harayama	Ray-Wave Correspondence in Stadium-Shaped Optical Cavities	2007/7/1~ 2007/7/5	有	発表済
0213070525001	国内大会	日本物理学会 第 62 回 年次大会	篠原 晋 福嶋 丈浩 (ATR/岡 山県立大学) 原山 卓久	スタジアム型共振器によるレーザ 一発振:理論と実験の対応	2007/9/21~ 2007/9/24	有	発表済
0213070530001	国内研究会	電子情報通信学会 非 線形問題研究会(NLP)	篠原 晋 福嶋 丈浩 (ATR/岡 山県立大学) 原山 卓久	カオス共振器レーザー	2007/8/6~ 2007/8/7	有	発表済
0213070530002	国際会議	Optical microcavities: From rays to waves. From passive to active.	Susumu Shinohara and Takahisa Harayama	Ray-wave correspondence in stadium-shaped optical cavities	2007/7/6~ 2007/7/13	無	発表済

決裁番号	発表方法	雑誌名・国際会議名	発表者	タイトル	発表(予定)日	査読	状況
0213070530003	国際会議	Optical microcavities: From rays to waves. From passice to active.	Muhan Choi, Takehiro Fukushima and Takahisa Harayama	Alternate oscillations in Quasi-Stadium Laser Diodes	2007/7/6~ 2007/7/13	無	発表済
0213070601001	国際会議	8 th Japan-Slovenia Seminar on Nonlinear Science	Takahisa Harayama	Theory and Application of 2D Microcavitiy Lasers	2007/7/2~ 2007/7/6	有	発表済
0213070607001	国際会議	Optical microcavities: From rays to waves. From passive to active.	Satoshi Sunada, Takahisa Harayama, Syuichi Tamura and Keizo Inagaki	The effect of rotation in optical cavities: application to optical gyros	2007/7/6~ 2007/7/13	無	発表済
0213070619001	国内大会	2007 年秋季 第 68 回応 用物理学会学術講演会	S.Hiratsuka (Doshisya University), S.Saravanan, T.Harayama and N.Ohtani (Doshisya University)	Photoluminescence property of annealed InAs quantum dots capped by InGaAs layers	2007/9/4~ 2007/9/8	有	発表済
0213070629001	国内大会	2007 年電子情報通信学 会ソサイエティ大会	砂田 哲 田村 修一 石田 智己 齋藤 茂 (立命館大学) 稲垣 惠三 原山 卓久	S-FOG による新しいサニャック効 果理論の検証	2007/9/10~ 2007/9/14	有	発表済
0213070717001	国内研究会	電子情報通信学会 非 線形問題研究会	中榮 穣 竹花 広輝(甲南大 学) 佐々木 敬彦 福嶋 丈 浩 (ATR/岡山県立大学) 原 山 卓久	擬似スタジアム型半導体レーザ共 振器内部の発振モード観察	2007/8/6	有	発表済
0213070823001	国内研究会	電子情報通信学会 非 線形問題研究会	Muhan Choi, Takehiro Fukushima and Takahisa Harayama	Two Mode Interactions in Quasi-Stadium Laser Diodes oscillations	2007/8/6~ 2007/8/7	無	発表済

決裁番号	発表方法	雑誌名・国際会議名	発表者	タイトル	発表(予定)日	査読	状況
0213070927001	国内研究会	第11回レーザカオス 福井セミナー(The 11 th Fukui Seminar on Laser Chaos; 11 th FSLC)	篠原 晋 原山 卓久	二次元微小共振器レーザーにおけ るカオスの問題	2007/9/25~ 2007/9/26	無	発表済
0213071017001	誌上	Optics Express	福嶋 丈浩 (ATR/岡山県立大) 篠原 晋 原山 卓久	Light beam output from diamond-shaped total-internal reflection modes by using intracavity air gaps	2007/12/10	有	発表済
0213071017002	誌上	Physical Review A	篠原 晋 福嶋 丈浩 原山 卓久	Light emission patterns from stadium-shaped semiconductor microcavity lasers	2008/3/5	有	発表済
0213071017003	国際会議	9 th Japan-Slovenia Seminar on Nonlinear Science	篠原 晋 福嶋 丈浩 原山 卓久	Ray-wave correspondence in chaotic optical cavities	2007/11/12~ 2007/11/14	有	発表済
0213071023001	国際会議	9 th Japan-Slovenia Seminar on Nonlinear Science	Takahisa Harayama	2D Microcavity Lasers	2007/11/12~ 2007/11/14	有	発表済
0213071031001	その他	ATR 研究発表会 2007	原山 卓久 稲垣 惠三 田 村 修一 砂田 哲 田中 智 子 野戸 広之 宮坂 朋宏	半導体ファイバオプティックジャ イロ (S-FOG)	2007/11/1~ 2007/11/2	無	発表済
0213071031002	その他	ATR 研究発表会 2007	 原山 卓久 稲垣 恵三 砂 田 哲 宮森 良昌 篠原 晋 サラバナン シャンムカム 佐々木 敬彦 中榮 穣 	半導体レーザジャイロの研究開発	2007/11/1~ 2007/11/2	無	発表済
0213071031003	その他	技術情報協会セミナー 「ジャイロセンサの小 型・高精度化および車 載への応用」	原山 卓久	半導体レーザジャイロの研究開発	2007/11/28	有	発表済

決裁番号	発表方法	雑誌名・国際会議名	発表者	タイトル	発表(予定)日	査読	状況
0213071031006	誌上	光学	砂田 哲 篠原 晋 池田 研 介	波動カオスのレーザー発振	2008/3/10	有	発表済
0213071101001	誌上	Optics Express	Satoshi Sunada and Takahisa Harayama	Design of resonant microcavities: application to optical gyroscopes	2007/11/21	有	発表済
0213071101002	誌上	光学	原山 卓久	波動カオスと2次元共振器レーザ ー	2008/3/10	有	発表済
0213071121001	国際会議	19 th International Conference on Optical Fibre Sensors	Keizo Inagaki, Shuichi Tamura, Tomoko Tanaka, Hiroyuki Noto and Takahisa Harayama	Earth 's rotation rate detection using an extremely-large semiconductor fiber optic gyroscope extending over 10,000 m2	2008/4/14~ 2008/4/18	有	発表済
0213071122001	誌上	IEICE Electronics Express	Shanmugam Saravanan and Takashisa Harayama	Investigation of InxGal-xAs strain reducing layers effects on InAs/GaAs Quantum dots	2008/1/25	有	発表済
0213071129001	国内大会	日本物理学会 第 63 回 年次大会	篠原 晋 福嶋 丈浩 原山 卓久	近可積分光線ダイナミクスを呈す る二次元光共振器からの光放射パ ターン	2008/3/22~ 2008/3/26	有	発表済
0213071220001	国際会議	The 5 th International conference on semiconductor Quantum dots	Shanmugam Saravanan and Takashisa Harayama	Improvement in size distribution and optical properties of InAs/GaAs QDs by post growth thermal treatment	2008/5/11~ 2008/5/16	有	発表済
0213080109004	国内大会	2008 年電子情報通信学 会総合大会	稲垣 惠三 田村 修一 田 中 智子 野戸 広之 原山 卓久	半導体ファイバオプティックジャ イロによる地球自転角速度の検出	2008/3/18~ 2008/3/21	有	発表済

決裁番号	発表方法	雑誌名・国際会議名	発表者	タイトル	発表(予定)日	査読	状況
0213080314001	国際会議	The 8 th International conference on Excitonic Process in Condensed Matter	S. Hiratsuka (Doshisha Univ.), S. Saravanan, T. Harayama and N. Ohtani (Doshisha Univ.)	Photoluminescence properties of annealed InAs quantum dots capped by InGaAs layers	2008/6/22~ 2008/6/27	有	発表済
0213080317001	国際会議	First Mediterranean Photonics Conference 2008	Satoshi Sunada and Takahisa Harayama	Rotating resonant microcavities: application to optical gyroscopes	2008/6/25~ 2008/6/28	有	発表済
0213080324001	国内大会 (韓国)	The Korean Physical Society Annual Conference 2008 Spring	Muhan Choi, Susumu Shinohara, Takehiro Fukushima (Okayama Pref. Univ.) and Takahisa Harayama	Transition from single to multi-mode lasing in stadium-shaped InGaAsP microlasers	2008/4/17~ 2008/4/18	無	発表済
0213080401001	国際会議	10 th Anniversary International Conference on Transparent Optical Networks	Takahisa Harayama and Satoshi Sunada	Sagnac Effect and Frequency Splitting in Rotating Optical Microcavities	2008/6/22~ 2008/6/26	有	発表済
0213080403002	国際会議	International Seminar and Workshop on New Frontiers of Quantum Chaos in Mesoscopic Systems	Takahisa Harayama	Theory and Application of 2D Microcavity Lasers	2008/5/19~ 2008/5/30	有	発表済
0213080422001	国際会議	International Seminar and Workshop on New Frontiers of Quantum Chaos in Mesoscopic Systems	Muhan Choi, Susumu Shinohara, Takehiro Fukushima and Takahisa Harayama	Convergence of far-field characteristics upon ray dynamics with the transition from single to multi-mode lasing in stadium microlasers	2008/5/19~ 2008/5/30	有	発表済
0213080425001	国際会議	10 th Anniversary International Conference on Transparent Optical Networks	Yutaka Nakae, Tomohiro Miyasaka, Takahiko Sasaki, Susumu Shinohara and Takahisa Harayama	Lasing emission patterns from Monza-shaped semiconductor microcavities	2008/6/22~ 2008/6/26	有	発表済

決裁番号	発表方法	雑誌名・国際会議名	発表者	タイトル	発表(予定)日	査読	状況
0213080509001	誌上	Physical Review A	Muhan Choi, Takehiro Fukushima (Okayama Pref. Univ.) and Takahisa Harayama	Alternate oscillations in Quasi-Stadium Laser Diodes	2008/6/11	有	発表済
0213080512001	国際会議	7 th International Summer School and Conference "Let's Face Chaos through Nonlinear Dynamics"	Takahisa Harayama	Wave Chaos in Rotating Optical Microcavities	2008/6/29~ 2008/7/13	招待	発表済
0213080516001	国際会議	Frontiers in Optics 2008	Takahisa Harayama	Nonlinear Dynamics in Deformed Microcavity Lasers	2008/10/19~ 2008/10/23	有	発表済
0213080520001	国際会議	Frontiers in Optics 2008	Muhan Choi, Susumu Shinohara, Takehiro Fukushima (Okayama Pref. Univ.) and Takahisa Harayama	Convergence of far-field characteristics upon ray dynamics in stadium microlasers	2008/10/19~ 2008/10/23	有	発表済
0213080616001	国内大会	2008 年秋季 第 69 回応 用物理学会学術講演会	田中 智子 砂田 哲 田中 潤 原山 卓 久 杉村 陽 (ATR/甲南大)	エルビウム添加ファイバリングレ ーザを用いた角速度センサ	2008/9/2~ 2008/9/5	無	発表済
0213080616002	国内大会	2008 年秋季 第 69 回応 用物理学会学術講演会	平塚 伸悟 (同志社大) S. サラバナン 原山 卓久 大 谷 直毅 (同志社大)	アニール処理された InGaAs 埋込 み InAs 量子ドットのフォトルミ ネッセンス特性(II)	2008/9/2~ 2008/9/5	有	発表済
0213080617001	国内大会	2008 年秋季 第 69 回応 用物理学会学術講演会	S.Saravanan and T.Harayama	Tunable intersubband energy spacing of InAs/GaAs self assembled quantum dots by rapid thermal annealing	2008/9/2~ 2008/9/5	有	発表済
0213080710001	誌上	Physica Status Solidi ©	Shingo Hiratsuka (Doshisha Univ.), Shanmugam Saravanan, Takahisa Harayama and Naoki Ohtani (Doshisha Univ.)	Photoluminescence properties of annealed InAs quantum dots capped by InGaAs layers	2008/9/30	有	発表済

決裁番号	発表方法	雑誌名・国際会議名	発表者	タイトル	発表(予定)日	査読	状況
0213080711001	国内大会	2008 年電子情報通信学 会ソサイエティ大会	太田 健司 石田 智己 稲垣 惠三 齋藤 茂(立命 館大) 原山 卓久	半導体ファイバオプティックリン グレーザジャイロによる回転方向 の検出実験	2008/9/16~ 2008/9/19	無	発表済
0213080717001	誌上	Physica Status Solidi (B)	Shanmugam Saravanan and Takashisa Harayama	Improvement in size distribution and optical properties of InAs/GaAs QDs by post growth thermal treatment	2009/1/14	有	発表済
0213080807001	国内大会	日本応用数理学会 2008 年度年会	篠原 晋 原山 卓久	二次元微小共振器レーザーにおけ るカオス応用	2008/9/17~ 2008/9/19	有	発表済
0213080808001	誌上	Physical Review A	Satoshi Sunada, Shuichi Tamura, Keizo Inagaki and Takahisa Harayama	A ring laser gyroscope without lock-in phenomenon	2008/11/19	有	発表済
0213080828001	その他	理研シンポジウム「科 学・技術・社会におけ るカオスによる変革」 〜カオスの発見からイ ノベーションへ〜	原山 卓久	2D Microcavity Lasers:Wave Chaos and Application	2008/9/16	無	発表済
0213081016001	誌上	Optics Express	Muhan Choi, Susumu Shinohara and Takahisa Harayama	Dependence of far-field characteristics on the number of lasingmodes in stadium-shaped InGaAsP microlasers	2008/10/27	有	発表済
0213081031001	その他	ATR/NICT オープンハウ ス 2008	稲垣 惠三	半導体ファイバオプティックジャ イロ(S-F0G)	2008/11/6~ 2008/11/8	無	発表済
0213081031002	その他	ATR/NICT オープンハウ ス 2008	原山 卓久	半導体レーザジャイロの研究開発	2008/11/6~ 2008/11/8	無	発表済
0213090113004	国内大会	2009 年春季 第 56 回応 用物理学関係連合講演 会	田中 智子 崔 武漢 砂田 哲 原山 卓久	狭線幅 Active/Passive 構成半導 体リングレーザ	2009/3/30~ 2009/4/2	無	

決裁番号	発表方法	雑誌名・国際会議名	発表者	タイトル	発表(予定)日	査読	状況
0213090113005	国内大会	2009 年春季 第 56 回応 用物理学関係連合講演 会	田中 潤 (ATR/甲南大) 砂田 哲 稲垣 惠三 田中 智子 原山 卓久 杉村 陽 (甲南大)	Er 添加ファイバリングレーザジャ イロにおけるファラデー回転子を 用いた同期現象の回避	2009/3/30~ 2009/4/2	焦	
0213090217001	誌上	Applied Physics Letters	Muhan Choi, Tomoko Tanaka, Satoshi Sunada and Takahisa Harayama	Linewidth Properties of monolithic Active-passive coupled In GaAs Semiconductor Ring Lasers	未定	有	