# 平成20年度 成果報告書

# 超高速光マルチメディア配信システム の研究開発

委託先: 沖電気工業(株)

平成21年4月

情報通信研究機構

# 平成20年度 成果報告書

「超高速光マルチメディア配信システムの研究開発」

目 次

| 1 | 研究開発課題の背景                                                                                                                                                                                                                                                                                                                                         | 2                                                                             |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| 2 | 研究開発の全体計画<br>2-1 研究開発課題の概要<br>2-2 研究開発目標<br>2-2-1 最終目標<br>2-2-2 中間目標<br>2-3 研究開発の年度別計画                                                                                                                                                                                                                                                            | 3<br>3<br>3<br>4<br>5                                                         |
| 3 | 研究開発体制                                                                                                                                                                                                                                                                                                                                            | 6<br>6                                                                        |
| 4 | 研究開発実施状況<br>4-1 光ラベル処理によるOTDM高速アクセスの研究開発<br>4-1-1 はじめに<br>4-1-2 16chシステム伝送設計<br>4-1-3 波長依存性の検証<br>4-1-3 波長依存性の検証<br>4-1-5 16chシステムの実証<br>4-1-5 16chシステムの構成<br>4-1-5-1 16chシステムの構成<br>4-1-5-2 16chシステムの最小プロトタイプの開発<br>4-1-5-3 SMF20km 伝送実験<br>4-1-6 OCDM による多重チャネル数増大の検討<br>4-1-6-1 チップパルス間同期<br>4-1-6-2 16chシステムの最小プロトタイプを用いた 20km 伝送実験<br>4-2 総括 | 7<br>8<br>8<br>10<br>11<br>13<br>.13<br>.13<br>.14<br>.18<br>18<br>.19<br>.21 |
| 5 | 参考資料・参考文献<br>5-1 研究発表・講演等一覧                                                                                                                                                                                                                                                                                                                       | 22<br>22                                                                      |
|   |                                                                                                                                                                                                                                                                                                                                                   |                                                                               |

#### 1 研究開発課題の背景

#### (研究背景)

インターネットの普及に伴い、ADSL や光などのブロードバンド加入者が急増している。 このような加入者は、ファイル転送や動画配信などのデータ通信が中心であり、ネットワ ークのトラフィックもパケット通信が大部分を占める状況になりつつある。ブロードバン ド加入者の増加に伴って、大容量の圧縮なしの映像を伝送するサービスなどを遅滞なく提 供できるネットワークが求められており、1 ユーザが 1Gbps 以上のバースト的なデータを 占有できるネットワークを必要とする時代がくることが予測される。

このような状況では、より効率的なパケット転送技術や、セキュリティの強化が必須と なっている。パケット転送では、トラフィックが発生したときのみ、帯域を占有するとい う統計多重に基づいているため帯域の利用効率に優れているが、従来の波長多重ネットワ ークのノードにおいては、波長単位で挿入・引き落とし・経路切り替え(スイッチング) を行うことから、同一波長のパケットの中から特定のパケットのみを選択的に挿入・引き 落とし・経路切り替え(スイッチング)することは不可能であった。そのため、トラフィ ックが十分にない場合にも、ノードへアクセスする手段として、一波長を占有し、光パス を設定する以外に方法はなかった。このため、ユーザはトラフィックの有無に関らず帯域 を占有するので、帯域の無駄となり、その分コストがかかる。また、ユーザ数に合わせて あらかじめ 1000 波長以上の波長数が必要となることから、ノード装置の規模が大きくなる ことや、帯域利用効率の低下などの問題があった。

そこで、波長多重ネットワークの光ノード(光クロスコネクト)と電気ルータを組み合わせ、WDM パスの一部分を電気信号に変換して、同一方向(宛先)のパケットをまとめるように電気処理でルーティングを行う方式により、電気ルータの処理低減と利用効率の改善を行う方法が検討されている。この方式は、ノードでの電気処理にかかる負荷が大きくなり、処理速度や遅延時間、電力消費、コストなどの問題点が生じ、パケット転送にもノードオフセット時間分の遅延が生じることから、その分ネットワーク転送効率低下が生じることが問題となる。また、ビットレートが40Gbps以上の高速となると、このような電気的な処理は適用できなくなる。

本研究は、このような状況に対応するために、光処理によって、選択的にパケットを認 識し、特定のパケットのみを選択的に挿入・引き落とし・経路切り替え(スイッチング) することを可能とする方式に関する基礎研究を行うものである。特に本研究では、今後の ネットワークで必要とされるビットレートが 40Gbps 以上のバースト的なデータ転送をタ ーゲットとしている。このような高速なパケット信号を、効率よくかつ高セキュリティに 転送できるネットワークを実現することは、今後、デジタル家電や、コンテンツサービス など、いろいろなブロードバンドサービスの提供の可能性を広げるものであり、情報通信 分野全体に革新的な影響を及ぼすと考える。

#### (研究分野の現状)

北米/欧州の光アクセス市場では、G-PON(2.5Gbit/s)の導入が進んでおり、世界標準 化活動では、10GE-PON や 10G-PON(共に 10Gbit/s の速度)の標準化が取り組まれている。 また、Ethernet のインタフェースは、40Gbit/s、100Gbit/sの開発及び標準化が順調に進 んでおり、「Communications Industry Research, Inc」の調査によると、2015 年ごろに 100GbEの市場が立ち上がると予測されている。世界的な主要学会である OFC2009 において、 100G イーサネット用などに DQPSK(位相変調方式)による 100Gbit/s の変調モジュールな どの展示も去年に続き行われていた。すなわち、アクセス速度もどんどん速くなってきて おり、100Gb/s 超の実用化が近づいている。 映像配信では、RF 信号をそのまま光化して配信するトリプルプレイの導入が進んでいる が、IP 統合の IPTV 配信も検討が進んでおり、現状の GE-PON や G-PON で品質が確保できる か問題視され、標準化においても、普及が始まる現時点で既に容量拡張の議論が進められ ている。

#### 2 研究開発の全体計画

#### 2-1 研究開発課題の概要

本研究では、光ルータ/光パケットスイッチのネットワークから、光符号ラベルによ り光領域でパケットを選択的に認識し、挿入・引き落とし・経路切り替え(スイッチン グ)などを行うことで、エッジノードの高付加を解消することからストレスなしのボー ダーレスネットワークを実現するものである。また、アクセスネットワークにおいては、 バックボーンで利用可能な光符号信号を OTDMA のスロットに載せて配信することで、現 状の PON システムにオーバーレイが可能でかつ、超高速なアクセスシステムが構築でき る。このため、高精細映像を無圧縮で転送できることから、リアルタイム高精細映像配 信を実現するものである。本研究開発は、光サイドバンド変調による光ラベル生成する 符号器の開発、OTDM のスロットに載せる光 MUX/DEMUX の開発、信号を抽出する可変復号 器の開発を行い、システム実証を行う。

サブテーマ

# ①光サイドバンド変調による光ラベル発生の研究 ②光ラベル処理による OTDM 高速アクセスの研究



#### 2-2 研究開発目標

#### 2-2-1 最終目標(平成 21 年 3 月末)

光ルータ/光パケットスイッチのネットワークから、光符号ラベルにより光領域でパケ ットを選択的に認識し、挿入・引き落とし・経路切り替え(スイッチング)などを行うこ とで、エッジノードの高付加を解消するとともに、アクセスネットワークにおいては、バ ックボーンで利用可能な光符号信号を OTDMA のスロットに載せて配信することで、現状の PON システムにオーバーレイが可能でかつ、160Gbps と超高速なアクセスシステムの実証を 行う。

#### ① 光サイドバンド変調による光ラベル発生の研究

光サイドバンド変調による符号器:16 チップ、拡散帯域 40Gbps

### ② 光ラベル処理による OTDM 高速アクセスの研究

- ・データを識別するための可変復号器:16 チップ、可変速度:50ms 以下
- •光16MUX/DEMUX:40Gbps×16ch (640Gbps相当)

を実現する。

#### 2-2-2 中間目標(平成19年1月末)

光サイドバンド変調により、40Gb/s以上のレートまで効率的にラベル付与を行う光ラベル方式を開発するとともに、10Gbpsのデータ信号によりラベル付与および「トータル光通信技術開発」で開発された光 MUX/光 DEMUX を用いて 4 多重信号によるデータ信号の抽出 実証を行う。

#### ① 光サイドバンド変調による光ラベル発生の研究

光サイドバンド変調による符号器:40Gb/sのレートで符号生成を実現

#### ② 光ラベル処理による OTDM 高速アクセスの研究

・固定符号器(16 チップ)による復号方法で、チャネル識別を確認

・光 4MUX/DEMUX: 40Gbps×4ch (160G 相当) による光ラベルの多重を確認

尚、中間評価の結果、上記の最終目標の達成に向けて、以下のように計画の見直しを行った。

【19 年度の研究】

19 年度の研究は、0~20kmの距離(アクセス区間)において、640Gbps 相当の伝送を 実現し、4 MUX のプロタイプを開発することで、基本システムを検証する。

- 640Gbps の伝送実現
  - ▶ モジュールの特性を加味した 0~20km の光伝送路の分散/SN 設計(シミュレ ーションモデル作成)
  - ▶ シミュレーション実施から 640Gbps 伝送を実現するためのパルス幅の条件、入力位相誤差条件、分散補償値条件などを導出
  - > 入力位相制御器の立案
  - 分散補償制御器実現の立案
- 4ch システムによる基本構成の検証
  - 上記条件下で、4chシステムのプロタイプを開発 (下りの 4ch/640Gbps 伝送のみ)
  - ▶ 基本検証により、システム化に向けた課題抽出

【20 年度の研究】

20年度の研究は、最終目標に向けて、16chへの拡張を検証し、16chマルチメディア配信システムを実証します。拡張方法としては、波長分割多重を用い、CWDMグリッド(P7-C40Chasの伝送世球は約11mmのため)による伝送な実現する

(RZ-640Gbpsの伝送帯域は約11nmのため)による伝送を実現する。

- 波長依存性の検証
  - ▶ CWDM4 波におけるモジュールの波長依存性を加味した分散設計/SN 設計(シ ミュレーションモデルの作成)
  - ▶ シミュレーション実施から 640Gbps×4 WDM 伝送を実現する各種条件を導出
  - ▶ 入力位相制御及び分散補償制御の改良
- 16ch システムの実証
  - ▶ 上り通信手段を GE-PON とした非対称帯域方式の制御方法立案
  - ▶ 10G-Ether のインタフェースを開発
  - ▶ 上記条件下で、16ch システムの最小プロトタイプを開発

上記プロトタイプを用いて、16chマルチメディア配信システムを実証

## 2-3 研究開発の年度別計画

(金額は非公表)

| 研究開発項目                                                       | 16 年度              | 17 年度   | 18 年度   | 19 年度  | 20 年度  | 計 | 備考       |
|--------------------------------------------------------------|--------------------|---------|---------|--------|--------|---|----------|
| 超高速光マルチメディア配信システムの<br>研究開発<br>① 光サイドバンド変調による光りラベル発<br>生の研究開発 | 方式開発・ <sup>、</sup> | デバイス開発・ | 評価      |        |        | _ | 京都工芸繊維大学 |
| ② 光ラベル処理による OTDM 高速アクセス<br>の研究開発<br>【可変符号器の研究】               | 方式開発・              | デバイス開発  | ・評価<br> |        |        |   |          |
| 【光 MUX/DEMUX の研究】                                            |                    | 方式      | 開発・デバイス | ≮開発・評価 |        |   |          |
| 【システム実証】                                                     |                    |         |         |        | システム実証 | _ |          |
| 間接経費                                                         | _                  | _       | _       | _      | _      | _ |          |
| 合 計                                                          | _                  | _       | _       | _      | _      | _ |          |

注) 1 経費は研究開発項目毎に消費税を含めた額で計上。また、間接経費は直接経費の30%を上限として計上(消費税を含む。)。

2 備考欄に再委託先機関名を記載

3 年度の欄は研究開発期間の当初年度から記載。

# 3 研究開発体制

# 3-1 研究開発実施体制



#### 4 研究開発実施状況

本年度は研究開発期間の最終年度であるので、まず、前年度までの実施状況をサブテー マごとに記載する。

#### サブテーマ①:光サイドバンド変調による光ラベル発生の研究

- ・光サイドバンド変調による符号発生方式の検討において、5本の縦モードと等間隔の遅延時間の組み合わせによる14400通りの全符号パターンについて自己相関と相互相関での再生信号ピーク強度比をFFTベースのシミュレーションにより計算した。その結果、すべての符号パターンにおいて6dB以上の消光比(自己相関と相互相関とのピーク比)が得られることが確認できた。
- ・シミュレーションで検討した符号パターンの中から 10dB 以上の消光比が得られる符号 パターンについて、FBG ベースの符号発生用デバイスを試作し、40GHz の繰り返しのモー ドロックレーザを光源として相関特性確認実験を行った。その結果、設計どおり 10dB 以 上の消光比を有する光ラベルの発生が可能であることが確認できた。 本研究サブテーマは、平成 16 年度~18 年度の研究である。

#### サブテーマ②:光ラベル処理による OTDM 高速アクセスの研究

- 15 チップ Gold-like 系列の位相符号から相関特性の良い4 種類の符号と波長ホップを用いる符号パターンを導出し、シミュレーションを行った結果、16 チャネル(光 16MUX)の自己相関・相互相関の識別が可能であることが確認できた。
- ・反射波長の異なる複数の単位位相符号器により1つの0CDM符号器をFBGで構成し、これらの単位位相符号器の相対遅延時間を光遅延線により制御する可変符号方式を考案した。
  シミュレーションを行った結果、パターンの可変性と自己相関・相互相関特性を確認することで、FBGによる可変符号器が実現できることが確認できた。
- 640Gbps が伝送可能なパルス幅の許容範囲を確認するために、各構成デバイスの特性を 考慮したアクセス区間のシミュレーションモデルを作成した。シミュレーションの結果、
   2.25ps 以下であれば BER10<sup>-12</sup>以上の受信が可能であることが確認できた。しかし、時間 ゲート処理に用いるクロックを抽出するために十分な、自己相関/相互相関ピーク比を得 るためには、入力パルス幅を 2ps 以下にしなければならないことが確認できた。
- 640Gbps が伝送可能な分散耐性を確認するために、伝送距離 20km のシミュレーションを 行った結果、分散補償量のマージンは 4.2ps/nm、分散スロープのマージンは 4.5ps/nm<sup>2</sup> であることが確認できた。
- ・シミュレーション結果を実証するために、SMF20km を用いた伝送実験を行った結果、シ ミュレーション結果と同様なクリアな受信波形が得られ、SMF20km 伝送によるパワーペ ナルティは 0.2dB 以下、TDM-MUX によるパワーペナルティは 1.2dB 以下と小さいことが 確認できた。
- ・光信号モニターによる光 MUX の隣接チャネル間遅延制御方式を検討した。光入力として 短パルスを用いた場合は、光信号モニター出力の RF スペクトルからフロア信号(20MHz) とピーク信号(250MHz)を求め、その強度差を検出することにより遅延制御が可能である ことが確認できた。
- ・40Gbpsのプロトタイプ作製と動作検証をおこなった。光サンプリングオシロスコープを 用いた測定結果から、従来の測定結果と同様にクリアな受信波形が得られており、本装 置が正常に動作していることが確認できた。
- ・受信装置における時間ゲート処理の自動制御の動作検証を行った。その結果、抽出タイ ミングが最適化された位置と外れた位置で 0.5dB 以上の光出力強度差があるため、これ を検出することで時間ゲート位置の最適化が可能であることが確認できた。

本研究サブテーマは、平成16年度~20年度の研究であり、次章に平成20年度の成果を記載する。

#### 4-1 光ラベル処理による OTDM 高速アクセスの研究開発

#### 4-1-1 はじめに

このテーマの目標は、光ラベル処理を行った 10Gbps×16ch の信号を光時分割多重 (OTDM) するための光 16MUX/光 16DEMUX 装置を開発することである。具体的には、まず、10Gbps の光パルスを発生し、16ch の信号を識別するために、光符号化デバイスにより 15chip の 短パルス列に符号拡散する。次に、その短パルス列を 40GHz (25ps)の 0TDM グリッドに配置 する。このときチップレートは 15chip/25ps=600Gcps であるため、約 1.6ps 幅の短パルス を時間スロットに多重する技術と伝送するための技術を開発する必要がある。従い、本研 究は、約 1.6ps パルスの多重及び伝送技術実現に注力し、符号化した 4ch-OTDM (600Gcps) を 4 波長で多重することで 160Gbps のデータ速度を検証する。また、光符号化された短パ ルス列は、光符号多重 (0CDM) が可能であるため、将来的に単一波長による装置の実現も 可能である。そこで、本研究は、15chip の光符号化デバイスを用いて、2ch の 0CDM の検討 も行った。

#### 4-1-2 16 ch システムの伝送設計

WDMを用いたシステムでは、隣接する波長間のクロストークにより伝送特性が劣化する。 そこで、このクロストークの影響を確認するため、モジュールの波長依存性を加味した分 散設計/SN設計(シミュレーションモデルの作成)を行い、波長多重数を1から4まで変 化させたときの受信波形のQ値をシミュレーションにより求めた。図4.1.1にシミュレー ションの構成を示す。CW 光源の中心波長(λ1~4)を 1530~1560nm の 10nm 間隔とし、波 長多重数に応じて、用いる光源をλ3だけ(4ch)、λ2とλ3(8ch)、λ1~3(12ch)、全波 長(16ch)とした。外部変調器から出力されるパルス幅を 0.8ps とし、実際の短パルス光 源の性能を考慮して、65fsのタイミングジッタを与えた。EDFAのNFは5dBとし、ASE光 のフィルタリングに Gaussian 型の BPF を用いた。光符号器には 15chip の BPSK で4種類の 符号を与え、それぞれの波長で光符号化した(図4.1.1中においてOptical Encoder1, 5, 9, 13 は同一符号である)。光符号化された各チャネルの信号は同一の強度とし、光遅延器により 25ps 間隔に調節して TDM-MUX した。伝送に用いた SMF のパラメータは、ファイバ長 20km、 ロス 0.4dB/km、DGD 0.2ps/km、分散 16.75ps/nm/km、分散スロープ 0.092 ps/nm<sup>2</sup>/km、A<sub>eff</sub>84.9 μm<sup>2</sup>、n2 2.6E<sup>-20</sup>m<sup>2</sup>/W とした。伝送された信号は、それぞれのチャネル毎に光復号器で復 号される。復号された信号は、相互相関によるノイズを除去するため、外部変調器を用い た時間ゲート処理(ゲート幅10ps)を行うこととした。



図 4.1.2 に 16ch 多重後のスペクトル波形を示す。入力パルス幅が 0.8ps のとき、周波数 チャープのないフーリエ変換リミット光パルス(Gauss)である場合、時間帯域幅積の計算 結果から波長帯域は約 4.4nm であるため、隣接波長間隔が 10nm のときのクロストークは小 さく、ダイナミックレンジは約 40dB であった。



図 4.1.2 16ch 多重後のスペクトル波形

図4.1.3に多重する波長数を変化させたときの(4ch→16ch)、分散補償前の受信パワーに 対する復号処理後(図4.1.1においてLPF20GHz後)の受信波形のQ値を示す。Q値が6のとき (BERで換算すると約10<sup>9</sup>)のそれぞれの受信パワーが、1波長(4ch多重)のとき約-32dB 、2波長(8ch多重)のとき約-27.9dB、3波長(12ch多重)のとき約-26.3dB、4波長(16ch 多重)のとき約-25.6dBと変化していることが分かる。これは、多重する波長数を変化させ ると、伝送前の光出力パワーがそれぞれ-1dBm、2dBm、3.7dBm、5dBmと大きくなるためで、 波長多重のクロストークによるパワーペナルティは、8ch多重のとき(-27.9)-(-32)-(2)+( -1)=1.1dBと小さいことが確認できた。同様に、12ch多重のとき(-26.3)-(-32)-(3.7)+(-1)=1.0dB、16ch多重のとき(-25.6)-(-32)-(5)+(-1)=0.4dBと小さいことが確認できた。また、20km伝送ファイバロスを-8dB(0.4dB/km)、16分岐器によるロスを-14dB、DCFのロスを-1dBであると考えると、本伝送システムのロスバジェットは23dBであり、16ch多重の場合に伝送前の光出力パワーが+5dBm、Q値が7のとき(BERで換算すると約10<sup>-12</sup>)の受信パワーが-24.8dBであることを考えると、(5)-(-24.8)=29.8>23であり、このロスバジェット23dBは+分クリアできる値であり、設計値に問題がないことが確認できた。



図4.1.3 多重する波長数を変化させたときの受信波形のQ値

#### 4-1-3 波長依存性の検証

将来的な波長利用効率の改善を検討するために、上述した設計値をもとに、隣接する波 長間隔を変化させたときの受信波形のQ値(8ch多重)をシミュレーションにより確認し た。図4.1.4に波長間隔を10nm→5nm→3nmと変化させたときのスペクトル波形の変化を示 す。波長間隔10nmのときに約40dBであったダイナミックレンジが、波長間隔5nmのとき に約10dB、波長間隔3nmのときに約5dBと低減することが確認できた。図4.1.5に波長間 隔を変化させたときのそれぞれの受信波形のQ値を示す。波長間隔10nmのときと5nmのと きの受信パワーを比較すると、約0.9dB(Q値6)とペナルティは小さいことが確認できた。 一方、波長間隔を3nmまで狭めるとペナルティが約4.5dBまで拡大することが確認できた。 また、本システムのロスバジェットが約23dBであり、Q値が7のときの受信パワーは-18dBm より小さい必要があり、波長間隔3nmではペナルティが大きく実現できないため、波長間 隔5nmまでが許容範囲であると判断した。



図 4.1.4 波長間隔を変化させたときのスペクトル波形の変化(8ch)



図 4.1.5 波長間隔を変化させたときの受信波形のQ値(8ch)

#### 4-1-4 位相制御の改良

前年度に検討した光信号モニターによる光 MUX の隣接チャネル間遅延制御方式について、 光遅延量の精度をあげることにより、光入力として光符号化後の光パルス列を用いた場合 にも動作するように、光遅延時間のフィードバック制御系を構築した。一例として、2ch の制御系を図 4.1.6 に示す。パルス発生、データ変調後に光符号化された信号は、光遅延 器(T1 お呼び T2)を介して多重される。多重された信号は、分岐され、一方は OTDM/OCDM 装置の出力となり、他方は制御系の光強度変調器へ送られる。光変調器は、基準クロック である 10GH の信号と、 差周波である 0.25GHz の信号のミキシングにより得られたサンプリ ング周波数 9.75GHz の信号により駆動される。強度変調された信号は、PD によって光電気 変換され、フィルタリングにより 0.25GHz の信号だけがパワーモニタリングされる。この パワーモニタリングされた信号強度に応じて、T1 と T2 の光遅延量の調整を行うことで、 フィードバックを行う。図 4.1.7 に OTDM/OCDM 装置の出力波形を、図 4.1.8 に PD からの出 力信号を RF スペクトルで測定した波形を示す。図 4.1.7(a)~(d)のように、T1 と T2 の光 遅延量の調整を行うことにより、2ch 多重した波形はそれぞれ 40GHz (25ps)の TDM スロッ トへ配置される。それぞれの配置の状態に応じて、図 4.1.8(a)~(d)に示すように、RF ス ペクトル波形が変化し、それに応じて 0.25GHz の信号強度が変化する。図 4.1.9 に 2ch の 遅延差 (T1-T2) に対する 0.25GHz のピークパワーの変化を示す。それぞれのチャネルの信 号は、10Gbpsの信号が1スロット(25p)に光符号化されているため、100psの繰り返しで重 なる。ピークパワーが最小値となる点が 2ch の信号が等間隔に配置された点であり、この 点を基準としてフィードバックを行うことにより、光 MUX の隣接チャネル間遅延制御を自 動的に行うことができる。図 4.1.9 に示すように、この制御は 0.1ps の精度による動作が 可能であり、600Gcps(パルス幅≒1.6ps)の短パルスのスロット配置が実現できた。



図 4.1.6 隣接チャネル間遅延制御方式の光遅延時間フィードバック制御系



図 4.1.7 OTDM/OCDM 装置の出力波形



図 4.1.8 PD からの出力信号を RF スペクトルで測定した波形



図 4.1.9 2ch の遅延差に対する 0.25GHz のピークパワーの変化

#### 4-1-5 16 ch システムの実証

#### 4-1-5-1 16 ch システムの構成

図 4.1.10 に 16ch システムの構成を示す。下りの信号は光符号化された 10Gbps の信号を 40GHz の TDM グリッドに 4ch-OTDM し、4WDM することで 160Gbps とする。また光符号化され ているため、OCDM を行うことで、さらに多重するチャネル数を拡大することが可能となる。 上りの信号は、既存の GE-PON と同様の方式を用いてトータル 1Gbps のシステムとする。 GE-PON の OLT から GE-PON の ONU ヘタイミング制御信号 (OAM) が出力された後、ONU は OLT ヘ上りの信号を送出する。このような既存システムを流用するためには、上りの信号と下 りの信号とを L2-SW で切替できるかどうかが課題の一つであり、ギガビットイーサおよび ファーストイーサのインタフェースを有する L2-SW を用いた評価の結果、L2-SW による上 り下り信号のポート切替は可能であることを確認した。



図 4.1.10 16ch システムの構成

#### 4-1-5-2 16 ch システムの最小プロトタイプの開発

16ch システム送受信装置の最小プロトタイプを作製した。図 4.1.11 に構成を、図 4.1.12 に概観を示す。送信機(Tx)は、波長間隔 10nm のファイバリングレーザ光源 4 台、4 台の EA 変調器および変調器ドライバを備えたデータ変調装置 4 台、符号の異なる 4 種類の光符 号器と光符号化されたそれぞれの信号の遅延量を調整する機能を備えた OCDM/OTDM 装置 4 台と4種の波長フィルタと合波器を備えた WDM 装置により構成される。受信機(Rx)は、 光復号器、クロック抽出器、時間ゲート処理用の光変調器、クロック信号およびデータ信 号を再生するための 2R レシーバにより構成される。分散補償部は波長フィルタを有し、復 号器に対応する波長成分だけに対し分散補償を行う。分散補償部と光復号器は、パワーロ スを補償するための光アンプを有する。



図 4.1.11 最小プロトタイプの概要



図 4.1.12 最小プロトタイプの概観

#### 4-1-5-3 SMF20km 伝送実験

16ch システム送受信装置の最小プロトタイプの動作確認のため、SMF20km を用いた伝送 実験を行った。図 4.1.13 に実験系を示す。実験に用いた SMF の分散および分散スロープは それぞれ、17.37ps/nm/km、0.0625ps/nm<sup>2</sup>/km であり,これを補償するために分散補償 -347.27ps/nm、分散スロープ-1.12ps/nm<sup>2</sup>の DCF(1550nm)を用いた。光源波長の違いによ り生じる分散補償後のパルス幅の変化は、光符号器に調整用の光ファイバを挿入すること により補償した。16ch すべてについて伝送評価を行うため、チャネルごとに Rx 内部の光 復号器の取替えを行い、EA 変調器後に挿入した光可変アッテネータ後のパワーに対するエ ラーレートを測定した。



図 4.1.14 に Tx 内部の各測定ポイントにおける時間波形を示す。①~④は各波長に対す る符号化波形、⑤~⑧は各波長における OTDM 波形である。⑤~⑧の波形が示すとおり、光 遅延時間フィードバック制御により、いずれの波長においても正確な隣接チャネル間遅延 制御が実現できることが確認できた。図 4.1.15 に 16 ch 多重された信号の時間波形を示す。 ⑨は伝送前、⑩は伝送後である。本システムでは短パルスを用いているため、分散補償を 行わない状態では、波形が大きく劣化してしまうことが確認できた。図 4.1.16 に分散補償 後⑪の時間波形を示す。各波長に応じた分散補償を行うことによって、波形が再生されて いることが確認できた。図 4.1.17 に光復号化後⑫の時間波形を、図 4.1.18 に時間ゲーテ ィング処理後⑬の時間波形を示す。図 4.1.17 の波形から、16 ch すべての復号化動作が正 確に行われていることが確認され、いずれの場合にもクロック抽出が可能であった。図 4.1.18 に示すように、16 ch すべてにおいてクリアなアイダイアグラムが得られることが確 認できた。



図 4.1.14 Tx 内部の各測定ポイントにおける時間波形 (①~④各波長に対する符号化波形、5~⑧各波長における 0TDM 波形)









図 4.1.18 時間ゲーティング処理後30の時間波形

図 4.1.19 に 16ch の BER 測定結果を示す。光符号器/復号器の相関特性に応じて様々な BER 測定結果が得られているが、いずれの場合も 10<sup>-9</sup>をクリアしていることが確認できた。 また、本システムの Tx 出力パワーは+9dBm であり、いずれのチャネルの受信パワーも-15dBm 以下であることから、本システムはロスバジェット 23dB 以上がクリアできることが確認で きた。



#### 4-1-6 OCDM による多重チャネル数増大の検討

同一の TDM スロットに同一波長で異なる符号の信号を多重する OCDM を行うことにより、 波長資源を有効に利用することが可能である。これにより、一波長で多重可能なチャネル 数の増大が実現できる。しかし、本システムでは、光符号長が短いために MAI ノイズの影響が大きく、また、同一波長成分の符号多重によるビートノイズの影響を大きく受けるた め、OCDM を実現するためにはこれらのノイズの影響を緩和する必要がある。そこで、本シ ステムでは、隣接チャネル間遅延制御方式の光遅延時間フィードバック制御方式を応用し て、多重される 2 つの符号化チップパルス列間でチップパルスの位置を正確にそろえる(チ ップパルス間同期) 方法を検討した。これにより、ビートノイズや MAI ノイズの影響を最 小限におさえることで、同一の TDM スロットに 2ch の 0CDM を実現した。

#### 4-1-6-1 チップパルス間同期

図 4.1.9 に示したように、0.25GHz のピークパワーが極大値をとるポイントが、光符号 化された 2ch の信号間のチップパルス間同期が確立された状態である。しかし、この極大 値をとるポイントは、図 4.1.9 に示すように、正確な位置の判別が難しい。そこで、まず、 0.25GHz のピークパワーが極小値をとるポイントを確認し、次に、2ch の信号間に基準クロ ックの 2 倍の値に相当する遅延量を与える(基準クロック 10GHz ならば 50ps) ことでチッ プパルス間同期を行う方法を検討した。図 4.1.20 にチップパルス間同期により 0CDM した 信号の時間波形を、(a)実測結果、(b)シミュレーション結果についてそれぞれ示す。これ らを比較すると、相似した波形が得られているため、正確なチップパルス間同期が実現で きていると判断した。



図 4.1.20 チップパルス間同期により OCDM した信号の時間波形 (a) 実測(b) シミュレーション

図 4.1.21 に復号化後の時間波形を示す。(a)、(b)はそれぞれ ch1 の実測結果とシミュレーション結果であり、(c)、(d)は ch2 の結果である。いずれのチャネルの場合も、実測結果とシミュレーション結果で相似した波形が得られており、本方式によるチップパルス間同期は有効であることが確認できた。



図 4.1.21 復号化後の時間波形 (a) ch1-実測 (b) ch1-シミュレーション (c) ch2-実測 (d) ch2-シミュレーション

#### 4-1-6-2 16ch システムの最小プロトタイプを用いた 20km 伝送実験

16ch システム送受信装置の最小プロトタイプを用いて、チップパルス間同期を行った OCDM 信号による 20km 伝送実験を行った。図 4.1.22 にチップパルス間同期により OCDM さ れた信号の時間波形を示す。同一波長で異なる光符号を有する ch1 と ch3、ch2 と ch4 をそ れぞれ同一スロットに多重した。(これにより生じる空のスロットを利用することで、将来 的に波長利用効率を上げることが可能となる。)



図 4.1.22 プロトタイプを用いて OCDM された信号の時間波形

図 4.1.23 に 16ch 多重 (2ch-OCDM×2ch-OTDM×4WDM) された信号の (a) 伝送前、(b) 伝送 後、(c) 分散補償後の各ポイントにおける時間波形を示す。図 4.1.15 と図 4.1.16 に示した 4ch-OTDM×4WDM の場合と同様に、伝送ファイバによる分散を補償することで、WDM 前の時 間波形が再現されることが確認できた。



(a) 伝送前、(b) 伝送後、(c) 分散補償後

図 4.1.24 に復号後の時間波形を ch1 と ch3 についてそれぞれ示す。ビートノイズの影響に

よる強度の揺らぎが生じているが、いずれの場合もクリアなアイダイアグラムが得られて いることが確認できた。図4.1.25に再生されたクロック波形を示す。いずれの場合も安定 したクロック抽出が可能であることが確認できた。図4.1.26に時間ゲート処理後の時間波 形を示す。抽出されたクロックが安定しているため、正確な時間ゲート処理が行われてい ることが確認できた。



図 4.1.26 時間ゲート処理後の時間波形

図 4.1.27 に BER 測定結果を示す。図 4.1.19 の結果と同様に、光符号/復号動作によるペ ナルティが生じているが、OCDM による大きな劣化はなく、エラーフリー伝送が可能である ことが確認できた。



### 4-2 総括

以下に成果を示す。

- ・隣接波長からのクロストークの影響を確認するため、モジュールの波長依存性を加味した分散設計/SN設計(シミュレーションモデルの作成)を行った。シミュレーションの結果から、波長多重なしの場合に対するパワーペナルティは、2 波長(8ch)多重のとき1.1dB、3 波長(12ch)多重のとき1.0dB、4 波長(16ch)多重のとき0.4dBといずれの場合にも小さいことが確認できた。また、16ch多重の場合でも、ロスバジェット23dBは十分クリアできる値であり、設計値に問題がないことが確認できた。
- ・波長利用効率の改善を検討するために、隣接する波長間隔を変化させたときのシミュレ ーションを行った結果、波長間隔 5nm までが許容範囲であることが確認できた。
- ・光遅延時間のフィードバック制御系を構築し、光 MUX の隣接チャネル間遅延制御の自動 化を行った。その結果、光 MUX の隣接チャネル間遅延制御は 0.1ps の精度による動作が 可能であり、600Gcps (パルス幅≒1.6ps)の短パルスのスロット配置が実現できた。
- ・16ch システム送受信装置(4ch-OpticalCoded TDM×4WDM)の最小プロトタイプを作製し、 SMF20km を用いた伝送実験を行った。BER 測定結果から、16ch いずれの場合も 10<sup>-9</sup>をク リアしており、ロスバジェット 23dB 以上がクリアできることが確認できた。
- ・隣接チャネル間遅延制御方式の光遅延時間フィードバック制御方式を応用して、チップ パルス間同期による OCDM を実現した。16ch 多重(2ch-OCDM×2ch-TDM×4WDM)された信 号の SMF20km を用いた伝送実験における BER 測定結果から、OCDM による大きな劣化はな く、エラーフリー伝送が可能であることが確認できた。

#### 5 参考資料・参考文献

#### 5-1 研究発表・講演等一覧

[1] (学会発表) 辰巳大祐、守友連一、和田尚也、大柴小枝子、「SSFBG を用いた光位相 信号ラベル方式における波長およびパルス幅依存性の実験検討」、電子情報通信学会 2005 春:B-10-79

[2] (学会発表) 辰巳大祐、小林秀幸、佐々木健介、大柴小枝子、「モードロックレーザの 縦モード変調を用いた光符号ラベル認識に関する検討」、電子情報通信学会 2005 秋: B-10-37

[3] (学会発表) 辰巳大祐、山元梨紗子、大柴小枝子、「ヘッダーラベル間相互接続が可能 な光ラベルネットワークの検討」、電子情報通信学会 2006 春: B-12-34

[4] (学会発表) 辰巳大祐、小林秀幸、佐々木健介、大柴小枝子、「スペクトル時間変調方 式を用いた光符号ラベル生成に関する検討」、電子情報通信学会技術研究報告: PN2005-62 [5] (学会発表) 大柴小枝子、佐々木健介、小林秀幸、「FBG 符号器を用いた光符号ラベル 生成に関する検討」、電子情報通信学会技術研究報告: 0FT 研究会 2006 年 5 月

[6] (国際会議) D.Tatsumi and S.Oshiba, "Spectrum-time Modulation a new way for Optical Label Recognition by using Longitudinal Modes of the MLLD", Proceedings of CPT2006 J-3

[7] (論文) 辰巳大祐、大柴小枝子、「モードロックレーザの縦モード変調を用いたひかり 符号ラベル生成手法」、電子情報通信学会和文論文誌

[8] (論文) R.Moritomo and S.Oshiba, "Simulation Study of Pulse Width Dependence in Time-Spreading OCDM System Using Phase En/Decoder", IEICE Transactions. Vol.E88-B No.10 p.3971, 2005

[9] (国際会議) S.Oshiba, "Optical code generation using optical correlator based on super-structured fiber bragg grating", Joint Workshop on OCDMA and OPS, December, 2006

[10] (国際会議) S.Oshiba, D.Tatsumi, H.Tamai, K.Sasaki, S.Kobayashi, Y.Ogawa, "Optical Code Generation Using Longitudinal Mode Modulation of 40Gbps Mode-Locked Laser Diode", Proceeding of the OFC-NFOEC, 2006

[11] (学会発表)岩村英志、辻弘美、玉井秀明、更科昌弘、湊直樹、鹿嶋正幸、上條健、 「FBG型光符号器を用いた OTDM 信号のチャネル識別に関する検討」、電子情報通信学会 2007 秋:B-10-60

[12] (国際会議)Hideyuki Iwamura, Hiromi Tsuji, Hideaki Tamai, Masahiro Sarashina, Naoki Minato, Masayuki Kashima, Takeshi Kamijoh, "A Study of 160Gbps PON System Using OTDM and OCDM Technologies", Proceeding of the OFC-NFOEC, 2008

[13] (学会発表) 岩村英志・辻 弘美・更科昌弘・玉井秀明・湊 直樹・鹿嶋正幸・上條 健、「OTDM/OCDM ハイブリッド技術を用いた高速 PON システムの検討」、電子情報通信学会 研究報告会: OCS2008-54

[14] (国際会議) Hideyuki Iwamura, Hiromi Tsuji, Hideaki Tamai, Masahiro Sarashina, Naoki Minato, Masayuki Kashima, Takeshi Kamijoh, "Optical Code Division Multiplexing Technique for Ultra High Speed NGA Asymmetric PON System", Proceeding of the OFC-NFOEC, 2009

[15] (報道発表) プレスリリース、OKI web サイト、2009 年 3 月 24 日