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Abstract 

In this document submitted to the NIST’s Post-Quantum Cryptography Standardization 
Process, we describe a PKE scheme and a KEM scheme called LOTUS-PKE and LOTUS-
KEM respectively. Both are proven to be IND-CCA2-secure solely under the standard LWE 
assumption, in the random oracle model. This security notion is a security requirement 
described in the NIST’s Call For Proposals. 

? Learning with errOrs based encryption with chosen ciphertexT secUrity for poSt quantum era. 
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1 Preliminaries 

1.1 Notations 

This section defines a few notations used throughout this document. The symbols k and ⊕ 
stand for the concatenation and XOR of bit strings. Let Z and R be the set of integer and 
real numbers respectively. Let Zq ⊂ (−q/2, q/2] be the set of integers centered modulus q. 
Taking modulus q is via the formula 

x mod q = x − bx/qeq 

for x ∈ R in which bx/qe is the rounding of x/q to the nearest integer in the interval 
(x/q − 1/2, x/q +1/2]. Let Za

q 
×b be the set of matrices of size a × b whose elements are from 

Zq. 
We use Z(0,s) to denote the discrete Gaussian distribution of mean 0 and standard devi-

ation s, and Za×b as the set of all matrices of size a × b whose elements are sampled from (0,s) 
Z(0,s). 

1.2 Public key encryption 

PKE. A public key encryption (PKE) scheme consists of key generation KeyGenpke, en-
cryption algorithm Encpke, and decryption algorithm Decpke algorithms. KeyGenpke(λ) with 
security parameter λ outputs public key pk and secret key sk, or (pk, sk) ← KeyGenpke(λ) 
for short. The algorithm Encpke(pk, M) encrypting a message M returns a ciphertext C, or 
C ← Encpke(pk, M) for short. Correctness holds if Decpke(sk, C) = M . 

IND-CCA2 security of PKE. IND-CCA2 is the standard security notion for public key 
encryption. To define the security of PKE, consider the following game with adversary A. 
First, the key pair (pk, sk) is generated by running KeyGenpke(λ) and pk is given to A. In 
the so-called find stage, A can query any C of its choice to oracle Decpke(sk, ·). 

Then A invokes a challenge oracle with two messages of equal length (M0,M1), who takes 
b ∈ {0, 1} uniformly at random and computes C∗ ← Encpke(pk, Mb). The oracle returns the 
challenge ciphertext C∗ . 

After that, in the guess stage, A can again access to the oracle Decpke(sk, ·), but is not 
allowed to query C∗ to the decryption oracle. Finally, A returns b0 as a guess of the hidden 
b. 

The PKE is IND-CCA2-secure if the advantage 

Advind−cca2 
PKE,A (λ) = 

����Pr[b0 = b] − 
1 
2 

���� 
is negligible in λ for all poly-time adversaries A. 
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1.3 Key encapsulation mechanisms 

KEM. A key encapsulation mechanism (KEM) consists of key generation KeyGenkem, encap-
sulation Enckem, and decapsulation Deckem algorithms. KeyGenkem(λ) with security parameter 
λ outputs public key pk and secret key sk. The algorithm Enckem(pk) returns a pair (C, K). 
Correctness holds if Deckem(sk, C) = K. 

IND-CCA2 security of KEM. To define the security of KEM, consider the following 
game with adversary A. First, (pk, sk) ← KeyGen(λ) and pk is given to A. In the so-called 
find stage, A can query any C of its choice to oracle Dec(sk, ·). 

Then A invokes a challenge oracle who computes (C∗, K∗) ← Enc(pk), then takes K∗ 

randomly and of equal size of K∗, and chooses b ∈ {0, 1} uniformly at random. The oracle 
returns challenge pair (C∗, K(b)) in which K(0) = K∗ and K(1) = K∗. 

After that, in the guess stage, A can again access to the oracle Dec(sk, ·), but is not 
allowed to query C∗ to the decapsulation oracle. Finally, A returns b0 as a guess of the 
hidden b. 

The KEM is IND-CCA2-secure if the advantage 

Advind−cca2 
KEM,A (λ) = 

����Pr[b0 = b] − 
1 
2 

���� 
is negligible in λ for all poly-time adversaries A. 

1.4 The Learning with Errors (LWE) assumption 

The Learning with Errors (LWE) assumption [36] ensures the security of our proposed 
LOTUS-PKE and LOTUS-KEM schemes, and is recalled here. 

g$← ← 
randomly sampling from the discrete Gaussian distribution. Related to the decision LWE 
assumption LWE(n, s, q), where n, s, q depend on the security parameter λ, consider matrix 

The symbol is for randomly sampling from the uniform distribution, while for 

g$ Z ×m n← q 

Zq. Define the following advantage of a poly-time probabilistic algorithm D: 
A

$← Zm×1, vectors r q , x 
g← Zn×1 ← Zm×1 , e (0,s) (0,s) . Then vector Ax + e is computed over 

Adv
LWE(n,s,q) 
D (λ) = 

���Pr[D(A, Ax + e) → 1] − Pr[D(A, r) → 1] 
���. 

LWE(n,s,q)
The decision LWE assumption asserts that AdvD (λ) is negligible as a function of 
λ. Also note that, originally, x is chosen randomly from Zn

q 
×1 in [36]. However, as showed 

g

In addition, the computational LWE problem is defined and analysed in Section A.1.3. Cer-
tainly, if the computational LWE problem is solved, then so is the decisional one. Therefore, a 
parameter set for the computational LWE problem implies a parameter set for the decisional 
LWE problem. 

in [8, 30], it is possible to take x ← Zn×1 without weakening the assumption as we do here. (0,s) 
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2 A Known IND-CPA-secure PKE 

The following PKE scheme is from Lindner-Peikert [26], which is used as a component in 
the construction of LOTUS-PKE and LOTUS-KEM. 

Key generation KeyGencpa (pp, λ): Choose positive integers q, n, l, and take matrix A ∈pke

Zn×n 
q uniformly at random. Fix deviation s ∈ R and take Gaussian noise matrices R, S ∈ 

Zn×l 
(0,s) at random. The public key is pk = (P, A, q, n, l, s) for P = R − AS ∈ Zq

n×l, and the 
secret key is sk = S. Here, l is the message length in bits, while n is the key dimension. 
Return (pk, sk). 

Encryption Enccpa(M ; randomness): To encrypt M ∈ {0, 1}l, use randomness to take Gaus-pk 

∈ Z1×n ∈ Z1×lsian noise vectors e1, e2 , and e3 , and return ciphertext c = (c1, c2) ∈(0,s) (0,s)

Z1×(n+l) 
q where j k 

c1 = e1A + e2 ∈ Zq 
1×n , c2 = e1P + e3 + M · q ∈ Zq 

1×l . 
2 

Decryption Deccpa(c): To decrypt c = (c1, c2) ∈ Z1
q 
×(n+l) 

by secret key S, compute M = sk 
c1S + c2 ∈ Zq

l . Let M = (M1, . . . , M l). If M i ∈ [−b
4 
q c, b

4 
q c) ⊂ Zq, let Mi = 0; otherwise 

Mi = 1. Return M = M0 k · · · k Ml ∈ {0, 1}l . 

Theorem 1 (Lindner-Peikert [26]) Given the public key, the above PKE scheme has 
pseudo-random ciphertexts under the LWE assumption. 

The above scheme of Lindner-Peikert is not IND-CCA2-secure. Indeed, given a ciphertext 
0 ) ∈ Z1×(n+l)

c = (c1, c2) ∈ Z1
q 
×(n+l)

, the decryption of the modified ciphertext c0 = (c1, c2 q where 
c0 2 = c2 + e0 for vector e0 = (1, 0, . . . , 0) ∈ Z1×l is j k 

c1S + c 0 2 = (e1A + e2)S + e1P + (e3 + e 0) + M · q 
2 j k 

= (e1A + e2)S + e1(R − AS) + (e3 + e 0) + M · q 
2j k 

= e2S + e1R + (e3 + e 0)+M · q ∈ Zl
q. | {z } 2 

small noise 

Therefore, the message M inside the original ciphertext c = (c1, c2) can be recovered with 
non-negligible probability by the decryption of c0 = (c1, c2

0 ). 

3 Algorithm Specifications 

3.1 Design rationale 

The Learning with Errors (LWE) assumption has been proposed by Regev [36] in 2005. 
There are several reasons to believe that the LWE problem is hard, as listed in [37]: the best 
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algorithm solving LWE runs in exponential time of the LWE dimension and even quantum 
algorithms do not seem to help; LWE is an extension of the Learning Parity with Noise (LPN) 
problem, which is also extensively studied; and LWE hardness is linked to the worst-case 
hardness of standard lattice problems [12]. In addition, the practical hardness of LWE is ex-
tensively studied in the literature [2–5,26,27], on which we revisit and provide enhancements 
in Appendix A. 

Based on the LWE assumption, LOTUS-PKE has been already appeared in Aono et 
al. [5, Section 4] (by removing the proxy re-encryption part) and LOTUS-KEM is the trivial 
adaptation of LOTUS-PKE. Both make use of the public key encryption scheme in Lindner-
Peikert [26] (recalled in Section 2) in combination with the Fujisaki-Okamoto transformation 
in [19]. Thanks to this design rationale, both LOTUS-PKE and LOTUS-KEM are expected 
to achieve IND-CCA2 security. See also Section 5 for details. 

It may be possible to further enhance the efficiency of LOTUS. For example, the technique 
of reconciliation [35] may help reduce the ciphertext sizes a little. For the sake of simplicity 
in the design, in this version of LOTUS we do not employ the technique. 

3.2 Knuth-Yao discrete Gaussian sampling 

For generating discrete Gaussian noises, we employ the Knuth-Yao algorithm [24]. The mo-
tivation of Knuth-Yao algorithm is to sample from a finite discrete set X with using as small 
number of random bits as possible. The method consists of two parts: tree construction as a 
preprocess, and sampling. Suppose for each element s ∈ X, the generating probability p(s)P 
is given and these probabilities are normalized so that s∈X p(s) = 1. 

The preprocessing step constructs the binary tree, called a discrete distribution generating 
(DGG) tree, on which randomly searching outputs s with probability p(s). Suppose we have 
L-binary digits numbers p(s) that approximates p(s): |p(s)−p(s)| ≤ 2−L. For p(s) for s ∈ X, 
construct a binary matrix called a probability matrix, whose each row is corresponding to 
the binary representation of p(s), and each column is corresponding to the k-th digit of p(s). 
As the step 0 of the DGG tree construction method, consider the tree having only one node 
(root) without label. Then, at step k, for all non-labeled nodes at depth k − 1, add two 
children and set the label corresponding to s such that the k-th digit of p(s) is 1. Since all 
p(s) are in L bits after the point, it finishes at the step L and all leaves are labeled. 

In the sampling step, the algorithm starts at the root and moves to its left/right children 
with both probability 1/2, until it arrives the leaf, i.e., labeled node, and then it outputs 
the label of last node. By construction, the probability that the algorithm touches a depth 
k node is always 2−k, whenever it finishes the search or not. Thus, for each element s ∈ X, 
the probability that it was outputted at depth k is 0 (resp. 2−k) if the k-th bit of p(s) is 0 
(resp. 1). This fact means the total probability of s is indeed p(s). This is an outline of the 
standard Knuth-Yao algorithm (KY). 

To sample from the discrete Gaussian Z(0,s), we need to compute the probability that an 
integer i ∈ Z is generated. By definition, it can be easily computed within sufficiently high 
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accuracy: 
exp(−πx2/s2) 

q(x) = P∞ . 
1 + 2 i=1 exp(−πi2/s2) 

To determine a finite set X ⊂ Z for a precision parameter L, we use Lemma 4.4.1 of [28]: 

Lemma 1 For any x0 > 0, � � � �� 2 

← Z(0,s) 
g −xsx0 �√ 0Pr |x| > � x ≤ 2 exp . 

22π 

For the smallest x0 such that � � 

g

−x02 

≤ 2−L2 exp 
2 

set X = {0, 1, . . . , x0}, then corresponding probabilities are p(0) = q(0) and p(x) = 2 · q(x) 
for x ≥ 1. The desired distribution can be obtained by changing the sign of the output with 
probability 1/2. The statistical distance between the ideal discrete Gaussian and the above 
algorithm is 

∞X X 
← Z(0,s)] − Pr[x ← KY]| = ← Z(0,s)]|
g| Pr[x | Pr[x 

x=−∞ |x|>x0 

x0X 
g← Z(0,s)] − Pr[x ← KY]| 

< 3 · 2−L + (2x0 + 1)2−L . 

In our implementation, we set L = 262 to argue the 256-bit security of the scheme. Moreover, 
to speed up the algorithm, we employ following improvements: 

• Online tree construction [38]: One of the bottleneck of Knuth-Yao sampling is rela-
tively large memory usage because of the DGG tree. Instead of pre-constructing the tree, 
one can construct the tree at the sampling step to reduce the memory usage. 
Let nj be the number of unlabeled nodes and hj be the number of leaf nodes at the depth 
j. Suppose the current node at the sampling step is the i-th unlabeled node, counted from 
the most left side, and let dj = nj − i be the distance from the current node to the most 
right side unlabeled node. Then there are 2dj + 2 child nodes between the i-th node and 
the n-th node, and the distance from the left (resp. right) child node of the i-th node to 
the most right side unlabeled node is dj+1 = 2dj +1 − hj+1 (resp. dj+1 = 2dj − hj+1). The 
child node is a leaf node if dj+1 < 0, then scan j + 1-th column of the probability matrix Pkfrom the top until an index k s.t. dj+1 + l=1 vl,j+1 = −1, where vi,j is a (i, j)-th element 
of the probability matrix, is found, and output k as a label. Using this method, one can 
construct (part of) the DGG tree from the current node and the probability matrix, and 
the whole DGG tree is not required. 

+ | Pr[x 
x=−x0 
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• Optimization for hamming weight calculation [16, 38]: On the above method, the 
most time-consuming parts are in the calculation of hamming weight and the process 
of scanning columns of the probability matrix. To reduce the cost, we store the proba-
bility matrix as column-major order to sequentially access to the memory for scanning 
columns; and, we store a lookup table of hamming weights for several columns. We set 
the probability to miss the lookup table as < 2−30 . 

• Lookup table for first few depths [16]: Instead of coin flipping each time to choose a 
child node for the first few depths, we employ a lookup table to use several random bits 
at once. We set the probability to miss the lookup table as < 0.01 and the lookup table 
represents first 8 columns of the probability matrix. The lookup table only requires 256 
Bytes but significantly improves the sampling performance. 

Specifically, our implementation of the Knuth-Yao discrete Gaussian sampler is in the file 
sampler.c, and the sampling step is written in the code snippet below. 

1 U16 sample_unit_discrete_gaussian ( U8 * randomness , U32 * idx ){ 
2 const U8 msb = 0 x80 ; 
3 U8 coin ; 
4 U16 r; 
5 U32 p; 
6 int j , d; 
7 
8 while (1) { 
9 coin = csprng_sample_byte ( randomness , idx ); 

10 r = _LOTUS_KYDG_SAMPLER_LUT [ coin ]; 
11 if (!( r & msb )) return extend_sign_with_random_bit (r , randomness , idx ); 
12 
13 d = r ^ msb ; 
14 for (j = 0; j < _LOTUS_KYDG_SAMPLER_L1_WEIGHTDEPTH ; ++ j){ 
15 coin = csprng_sample_bit ( randomness , idx ); 
16 d = (d << 1) + coin ; 
17 d -= _LOTUS_KYDG_SAMPLER_L1_weight [j ]; 
18 if (d < 0) { 
19 r = scan_bit_and_output (d , j); 
20 return extend_sign_with_random_bit (r , randomness , idx ); 
21 } 
22 } 
23 
24 for (; j < _LOTUS_KYDG_SAMPLER_L1_NCOL ; ++ j){ 
25 coin = csprng_sample_bit ( randomness , idx ); 
26 d = (d << 1) + coin ; 
27 p = _LOTUS_KYDG_SAMPLER_L1_pMat [j ]; 
28 d -= __builtin_popcount (p); 
29 if (d < 0) { 
30 r = scan_bit_and_output (d , j); 
31 return extend_sign_with_random_bit (r , randomness , idx ); 
32 } 
33 } 
34 } 
35 } 

Code 1.1. Code snippet for the Knuth-Yao discrete Gaussian sampler. 
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The function takes 512 Bytes randomness pool and its index from the pool, and outputs a 
sample in Zq according to the discrete Gaussian distribution. At lines 9–11, sample using a 
lookup table LOTUS KYDG SAMPLER LUT with 8 random bits. It will be hit with probability 
> 0.99. If a hit is found, which is checked using the most significant bit of the value r, return 
the value with extending sign using the extend sign with random bit() function below. 

1 U16 extend_sign_with_random_bit( const U16 r, U8 *randomness , U32 *idx){ 
2 U16 ret [2]; 
3 ret [0] = r; 
4 ret [1] = (-r) & (_LOTUS_LWE_MOD - 1); 
5 return ret[csprng_sample_bit(randomness , idx)]; 
6 } 

Here ret is an array of signed value of r, where ret[0] stores positive and ret[1] stores neg-
ative. The output value is determined by a random bit sampled using csprng sample bit(). 

If the above lookup misses, sample using the online tree construction approach described 
above, at lines 14–33. At lines 14–22, the distance d is calculated using the lookup table of 
hamming weight LOTUS KYDG SAMPLER L1 weight, and if d < 0, which means the current 
node is a leaf and the corresponding label is an output value, scan the probability matrix 
to determine the label using scan bit and output() function below, then return the label 
value with extending sign. 

1 U16 scan_bit_and_output( long long d, const int j){ 
2 int t; 
3 U32 p = _LOTUS_KYDG_SAMPLER_L1_pMat[j]; 
4 for (t = 32 - 1; d < -1; --t) d += (p >> t) & 1; 
5 while (!((p >> t) & 1)) --t; 
6 return 32 - t - 1; 
7 } 

Here the array LOTUS KYDG SAMPLER L1 pMat stores the probability matrix in column-major 
order, and k-th bit of a value of the array is corresponding to the row of the matrix labeled 
as 32 − k − 1. The distance d is updated at line 4 until d = −1. Then skip 0’s at line 5 and 
return the label of the current node (the row index). 

The size of LOTUS KYDG SAMPLER L1 weight is fixed so that the probability to exit from the 
loop of lines 14–22 is < 2−30, and if it goes down to lines 24–33 of the Code 1.1, do almost 
the same things. The difference is, instead of using lookup table, just count the hamming 
weight straightforwardly using the popcount() function at line 28. 

3.3 LOTUS-PKE: our proposed LWE-based PKE 

The symbols and parameters in Table 1 are used in the specification of LOTUS. 

Let (SE, SD) be a symmetric encryption scheme which is one-time IND-CPA-secure with 
message space {0, 1}∗ . Symmetrically encrypting a message M ∈ {0, 1}∗ with a key K to 
obtain a ciphertext csym is written as csym = SEK (M). Decrypting the ciphertext csym is 
written as SDK (csym). 
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Table 1. Symbols and parameters in LOTUS. 

SE, SD Symmetric encryption and decryption algorithms. 
M Message to be encrypted. 
K Symmetric key. 

Symmetric ciphertext. csym 

G, H Hash functions. 
q LWE modulus. 
n LWE dimension. 
l An integer in the set {128, 192, 256} (security levels). 
σ A uniformly random bit string of length l. 
h A hash value. 
s Noise derivation. 

KeyLen An integer in the set {128, 192, 256} (security levels). 
{0, 1}∗ Bit string of arbitrary length. 

• Key generation KeyGencca (λ):pke

1. Fix two distinct hash functions G and H. 
2. Choose positive integers q, n, l. 
3. Take matrix A ∈ Zn

q 
×n uniformly at random. 

4. Fix deviation s ∈ R. Take Gaussian noise matrices R, S ∈ Zn×l randomly. (0,s) 

5. The public key is pk = (P, A, q, n, l, s) for P = R − AS ∈ Zn
q 
×l, and the secret key is 

sk = (S, pk). Return (pk, sk). 
• Encryption Enccca 

pke(M ∈ {0, 1}∗): 
1. Choose σ ∈ {0, 1}l uniformly at random. 
2. Symmetrically encrypt message M by letting csym = SEG(σ)(M). 
3. Let h = H(σ k csym). 
4. Encrypt σ: use randomness h, take Gaussian noise vectors e1, e2 ∈ Z1×n , and e3 ∈ Z1×l 

(0,s) (0,s) 

randomly, and compute ciphertext c = (c1, c2) = Enccpa(σ; h), namely compute pk j k q ∈ Z1×l c1 = e1A + e2 ∈ Zq 
1×n , c2 = e1P + e3 + σ · q . 

2 
5. Return ct = (c1, c2, csym). 

• Decryption Deccca = ) by secret key sk = (S, pk),pke(sk, ct): to decrypt ct (c1, c2, csym
execute following steps. 
1. (Reconstruction) Compute σ = c1S + c2 ∈ Zl . 
2. Let σ = (σ1, . . . , σl). If σi ∈ [−b q c, b q

q

, let σ0 = 0; otherwise σ0 = 1. 
4 4 c) ⊂ Zq i i 

3. Let σ0 = σ1 
0 · · · σl 0 and compute h0 = H(σ0 k csym). 

4. (Integrity check and output) Using σ0, h0, check 

(c1, c2) = Enccpa(σ0; h0),pk 

namely compute (c1
0 , c0 ) = Enccpa(σ0; h0), M 0 ) and 2 pk = SDG(σ0)(csym

(a) if (c1
0 , c0 62) = (c1, c2), the decryption fails; 

(b) otherwise return M 0 as the message. 
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3.4 LOTUS-KEM: our proposed LWE-based KEM 

In this section we consider the one-time-pad as the underlying symmetric encryption, so that 
SEu(v) = SDu(v) = u ⊕ v for two bit strings u and v. 

• Key generation KeyGencca (λ):kem

1. Fix two distinct hash functions G and H. 
2. Choose positive integers q, n, l, and KeyLen. 
3. Take matrix A ∈ Zn

q 
×n uniformly at random. 

4. Fix deviation s ∈ R. 
5. Take Gaussian noise matrices R, S ∈ Zn×l randomly. (0,s) 

6. The public key is pk = (P, A, q, n, l, s, KeyLen) for P = R − AS ∈ Zn
q 
×l, and the secret 

key is sk = (S, pk). Return (pk, sk). 
• Encapsulation Enccca 

kem(pk): 

1. Choose K ∈ {0, 1}KeyLen uniformly at random. 
2. Choose σ ∈ {0, 1}l uniformly at random. 
3. Let csym = SEG(σ)(K) = G(σ) ⊕ K ∈ {0, 1}KeyLen. 
4. Let h = H(σ k csym). 

∈ Z1×n5. Encrypt σ: use randomness h, take Gaussian noise vectors e1, e2 , and e3 ∈(0,s)

Z1×l , and obtain (c1, c2) ← Enccpa(σ; h), namely compute (0,s) pk k qj
= e1A + e2 ∈ Z1×n = e1P + e3 + σ · ∈ Z1×l c1 , c2 .q q2 

6. Return CT = (c1, c2, csym) as the encapsulation and K as the symmetric key. 
• Decapsulation Deccca (sk, CT ): to decrypt CT = (c1, c2, csym) by secret key sk = kem

(S, pk), execute following steps. 
1. (Reconstruction) Compute σ = c1S + c2 ∈ Zl

q. 
2. Let σ = (σ1, . . . , σl). If σi ∈ [−b

4 
q c, b

4 
q c) ⊂ Zq, let σi 

0 = 0; otherwise σi 
0 = 1. 

3. Let σ0 = σ1 
0 · · · σl 0 and compute h0 = H(σ0 k csym). 

4. (Integrity check and output) Using σ0, h0, check 

(c1, c2) = Enccpa(σ0; h0),pk 

0 0 
2) = Enccpanamely compute (c1, c pk (σ

0; h0), K = SDG(σ0)(csym) = G(σ0) ⊕ csym and 
(a) if (c1

0 , c0 2 6) = (c1, c2), the decapsulation fails; 
(b) otherwise return K as the symmetric key. 

4 Parameter Set and Performance Analysis 

4.1 Parameter sets 

Table 2 contains our suggested parameter sets. 
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Table 2. Parameters for LOTUS and expected security strengths. 

LWE parameter (n, q, s) Other parameters Security level NIST’s security category 
lotus-params128 
lotus-params192 
lotus-params256 

(n = 576, q = 8192, s = 3.0) 
(n = 704, q = 8192, s = 3.0) 
(n = 832, q = 8192, s = 3.0) 

l = 128, KeyLen = 128 
l = 192, KeyLen = 192 
l = 256, KeyLen = 256 

128-bit security 
192-bit security 
256-bit security 

AES-128, SHA3-256 
AES-192, SHA3-384 

AES-256 

Claim 1 (LWE bit security) The LWE assumption with the parameter lotus-params256 
(resp., lotus-params192, lotus-params128) in Table 2 has at least 256-bit security (resp., 
192-, 128-bit security). The equivalence with NIST’s security category is given in Table 2. 

The evidence of Claim 1 is given in depth in Appendix A. 

Choice of building blocks in LOTUS. For our implementations, we choose symmetric 
ingredients for LOTUS as in Table 3. In particular, the hash functions G and H will be of 
the following form: G(x) = SHA-512(x k 0x01) and H(x) = SHA-512(x k 0x02) for all bit 
strings x. 

Table 3. Symmetric ingredients in LOTUS. 

Symmetric encryption (SE, SD) AES-128-CTR for 128-bit security 
AES-192-CTR for 192-bit security 
AES-256-CTR for 256-bit security 

Hash function G(x) SHA-512(x k 0x01) 
Hash function H(x) SHA-512(x k 0x02) 

4.2 Correctness of LOTUS 

The parameters in Table 2 also ensure that probability of the decryption error due to unex-
pected large noises in encryption is less than 2−256 . 

We will use the following lemmas [10,11,26]. Below || · || stands for either the Euclidean 
norm of a vector or the absolute value; h·, ·i for inner product. Writing ||Zn || is a short (0,s)

hand for taking a vector from the distribution and computing its norm. 

Lemma 2 Let c ≥ 1 and C = c · exp(1−
2 
c2 
). Then for any real s > 0 and any integer n ≥ 1, 

we have � √ � 
c · s n 

Pr ||Zn || ≥ √ ≤ Cn .(0,s)
2π 

Lemma 3 For any real s > 0 and T > 0, and any x ∈ Rn, we have � � 
Pr ||hx, Zn i|| ≥ Ts||x|| < 2 exp(−πT 2).(0,s)
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Theorem 2 (Correctness of LOTUS) The decryption error in both LOTUS-KEM and 
LOTUS-PKE are less than 2−256 for all parameter sets lotus-params256, lotus-params192, 
and lotus-params128. 

Proof (of Theorem 2). The decryption in LOTUS-PKE and LOTUS-KEM yields noises, as 
follows: j k q 

c1S + c2 = e1R + e2S + e3 + m · . 
2 

Each component in Zq of the noise vector e1R + e2S + e3 can be written as the inner product 
of two vectors of form � � 

e = e1, e2, e3 � � 
x = r, r 0 , 0101×l 

0 ∈ Z1×nwhere vectors r, r represent corresponding columns in matrices R, S and 0101×l(0,s) 
stands for a vector of length l with all 0’s except one 1. 

Use || · || to denote the Euclidean norm, we have 

e ∈ Z1×(2n+l) 
, and ||x|| ≤ ||(r, r 0)|| + 1 (0,s) 

where (r, r0) ∈ Z1×2n. Applying Lemma 2 for vector of length 2n, with high probability of (0,s) � � 
2 ��2n

1 − c ≥ 1 − 2−2561 − C2n = 1 − c · exp (1)
2 

we have √ 
c · s 2n ||x|| ≤ √ + 1. 

2π 
We now use Lemma 3 with vectors x and e. Let ρ be the error per message symbol in p √ 
decryption, we set 2 exp(−πT 2) = ρ, so T = ln(2/ρ)/ π. For correctness, we need T · s · 
||x|| ≤ q/4, which holds true provided that !p √ 

ln(2/ρ) cs 2n q√ · s · √ + 1 ≤ . (2)
π 2π 4 

Concrete bounds. When n = 576 as in lotus-params128 we take c = 1.42 so that 
2−256condition (1) is satisfied. In (2) we use s = 3.0, ρ = , π ≈ 3.14 so that q ≥ 5302.7 

suffices. 
When n = 704 as in lotus-params192 we take c = 1.38 so that condition (1) is satisfied. 

In (2) we use s = 3.0, ρ = 2−256 , π ≈ 3.14 so that q ≥ 5690.5 suffices. 
When n = 832 as in lotus-params256 we take c = 1.35 so that condition (1) is satisfied. 

In (2) we use s = 3.0, ρ = 2−256 , π ≈ 3.14 so that q ≥ 6046 suffices. 
For all cases, as we choose q = 8192, the theorem follows. ut 
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4.3 Performance analysis of LOTUS-PKE and LOTUS-KEM 

The performance analyses of LOTUS-PKE and LOTUS-KEM are given in Tables 4, 5, 6, 7. 

Sizes. The key and ciphertext sizes in LOTUS are computed as follows in bits: 

• size(pk) = size(P ) + size(A) where size(P ) = nl log2(q) and size(A) = n2 log2(q). 
• size(sk) = size(pk) + nl log2(7.54s). 
• size(CT ) = size(c1) + size(c2) + size(csym) = (n + l) × log2(q) + size(csym). 

The constant 7.54 in estimating the size of sk is to ensure that its elements in absolute values 
are less than 7.54s approximately with probability 2−256 . 

Speed. We provide the three implementations for LOTUS-PKE and LOTUS-KEM: (1) ref-
erence implementation, (2) optimized implementation, and (3) AVX2-based implementation. 
Timings reported in Tables 6 and 7 are from the reference implementation on a computer 
with CPU Core i7-7700K (4.20 GHz). The timings are averaged over 212 times of executions 
for key generation and 217 times for encryption/encapsulation and decryption/decapsulation. 
The optimized and AVX2-based implementation (whose timings are not in the tables) are a 
little faster than the reference implementation. 

Table 4. LOTUS-PKE sizes. 

Parameter set Public key size Secret key size Encapsulation size 
lotus-params128 
lotus-params192 
lotus-params256 

658.95 (KB) 
1025.0 (KB) 
1471.0 (KB) 

700.42 (KB) 
1101.0 (KB) 
1590.8 (KB) 

1.144 (KB) + size(csym
1.456 (KB) + size(csym
1.768 (KB) + size(csym

) 
) 
) 

Table 5. LOTUS-KEM sizes. 

Parameter set Public key size Secret key size Encapsulation size 
lotus-params128 
lotus-params192 
lotus-params256 

658.95 (KB) 
1025.0 (KB) 
1471.0 (KB) 

700.42 (KB) 
1101.0 (KB) 
1590.8 (KB) 

1.144 (KB) 
1.456 (KB) 
1.768 (KB) 

5 Expected Security Strength 

We provide the evidence for the security strength of LOTUS-PKE and LOTUS-KEM. 

5.1 Classical security strength 

Theorem 3 The LOTUS-PKE scheme is IND-CCA2-secure under the LWE assumption 
provided that G, H are random oracles. 
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Table 6. LOTUS-PKE running times (for 1 KB messages, reference implementation). 

Parameter set KeyGencca 
pke Enccca 

pke Deccca 
pke 

lotus-params128 6,385.842 usec 
26,820,400 clock 

75.299 usec 
316,252 clock 

91.091 usec 
382,582 clock 

lotus-params192 11,109.302 usec 
46,658,849 clock 

105.636 usec 
443,667 clock 

139.862 usec 
587,417 clock 

lotus-params256 17,197.583 usec 
72,229,496 clock 

149.075 usec 
626,112 clock 

210.126 usec 
882,523 clock 

(usec denotes microsecond.) 

Table 7. LOTUS-KEM running times (reference implementation). 

Parameter set KeyGencca 
kem Enccca 

kem Deccca 
kem 

lotus-params128 6387.009 usec 
26,825,276 clock 

75.146 usec 
315,611 clock 

90.165 usec 
378,690 clock 

lotus-params192 10,975.066 usec 
46,095,015 clock 

110.201 usec 
462,842 clock 

142.581 usec 
598,836 clock 

lotus-params256 17,106.305 usec 
71,846,095 clock 

139.266 usec 
584,915 clock 

206.540 usec 
867,464 clock 

(usec denotes microsecond.) 

Proof. We utilize the Fujisaki-Okamoto transformation in [19]. Indeed, the encryption in the 
LOTUS-PKE scheme can be viewed as follows: � � � � 

Enccca Enccpa 
pk (m; σ) = pk σ; H(σ k csym) , SEG(σ)(m) (3) | {z } | {z }

csym (c1,c2) 

which is exactly the transformation in [19]. To be complete, the encryption scheme with 
Enccpa(·, ·) is one-way and (n + l) log2 q-spread (see [19, Definition 5.2]) due to Theorem 1. pk 
Applying [19, Theorem 6.1], the above theorem follows. ut 

Theorem 4 LOTUS-KEM scheme is IND-CCA2-secure under the LWE assumption pro-
vided that G, H are random oracles. 

The proof is similar to the proof of [19, Theorem 6.1]. 

Claim 2 (Security strength of LOTUS) Both LOTUS-PKE and LOTUS-KEM schemes 
achieve IND-CCA2 security with 256-bit security (resp., 192- and 128-bit security) with 
the parameter set lotus-params256 (resp., lotus-params192 and lotus-params128). The 
equivalence with NIST’s security category is also given in Table 2. 

The evidence of Claim 2 directly comes from Claim 1, together with Theorem 3 and Theorem 
4. 
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5.2 Quantum security strength 

Our proposed schemes LOTUS-PKE (Section 3.3) and LOTUS-KEM (Section 3.4) can be 
modified to have asymptotic security in the quantum random oracle model [44]. Specifically 
following [44], to have security in the quantum oracle model, the transformation given in (3) 
is turned to � � � � 

Enccca Enccpa 
pk (m; σ) = pk σ; H(σ k csym) , SEG(σ)(m), H 0(σ) (4) | {z } | {z }

csym (c1,c2) 

in which H 0 is an additional hash function viewed as a random oracle. Using (4), the en-
cryption in both LOTUS-PKE and LOTUS-KEM will have an additional line computing 
d = H 0(σ), and the decryption will check whether d = H 0(σ) accordingly. 

The IND-CCA2 security of the transformation given in (4) in the quantum oracle model 
are proved in [44, Theorem 4]. The additional assumption is that H 0 is a random oracle. 

Below we discuss our decisions on building LOTUS-PKE and LOTUS-KEM regarding 
the quantum oracle model: 

• We choose not to add H 0(σ) to the ciphertexts of LOTUS-PKE and LOTUS-KEM. The 
reason is that we think H 0(σ) only helps the security proof in the quantum oracle model, 
but plays little role in the actual security of LOTUS-PKE and LOTUS-KEM. 

• We currently ignore the concrete reduction in [44, Theorem 4] because it is very loose. 
Instead, we tentatively choose to increase the LWE dimension n in the future if there exist 
attacks (either classical or quantum) on the LWE assumption or directly on LOTUS. 

6 Known Attacks 

The only known attack to the IND-CCA2 security of LOTUS is to solve the LWE problem 
with parameters (n, q, s) in Table 2. 

7 Advantages and Limitations 

The advantage of LOTUS-PKE and LOTUS-KEM are on the fact that their securities relying 
solely on the LWE assumption [36]. 

One of its limitations is on the relatively big key sizes. Another is that the security 
arguments are in the random oracle model. 
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Appendix 

A Hardness Estimation and Proposed Parameters for LWE in 
LOTUS 

Our parameter sets lotus-params128, lotus-params192, and lotus-params256 are based 
on the theory to bound the cost of lattice based attack for LWE presented recently by Aono 
et al. in [6]. This section is mainly based on [6], with additional contents dedicated to the 
LWE assumption. 

The lattice based attacks against an LWE instance with parameter (n, q, s) consisting of 
three steps: 

(i) construct a lattice basis B from the instance, 
(ii) perform lattice reduction for B, and 
(iii) solve the bounded distance decoding corresponding to LWE. 

This attack model is completely the same as Liu-Nguyen [27], and typically called “the 
primal attack.” The attacker’s cost is given as follows and the minimum is over all lattice 
reduction algorithms and the success probability of the point search algorithm. 

Cost(LatticeReduction) + Cost(P ointSearch)
Cost(P roblem) = min . (5)

Success probability of PointSearch 

Roughly speaking, if one uses a stronger algorithm, the cost of lattice reduction increases, 
as that of point search is decreases. 

A.1 Technical backgrounds 

A.1.1 Basic notations and special functions 

Let Z and Zm are the set of integers and the ring {0, . . . ,m − 1} respectively. Q and R 
are the set of rational numbers and real numbers respectively. For natural numbers n ≤ m, 
[n, m] is the set {n, . . . , m} ⊂ Z and we denote [m] := [1,m]. Throughout this paper, m and 
k are usually used for the considered and projected dimension respectively. 

The gamma and beta functions are respectively defined by Z ∞ Z 1 

ta−1Γ (a) = e −tdt and B(a, b) = z a−1(1 − z)b−1dz. 
0 0 

The basic relations Γ (a + 1) = aΓ (a) and B(a, b) = Γ (a)Γ (b)/Γ (a + b) hold. 
For m ∈ N, let Bm(x, c) be the m-dimensional ball whose center is x ∈ Rm and radius 

c > 0. The center-origin ball is denoted by Bm(c) := Bm(0, c). The volume of m-dimensional 
πm/2 m 

ball with radius c is Vm(c) = c . In particular, we denote Vm := Vm(1). Also, Sm(r) is Γ ( m +1)
2 

the surface of Bm(r). The log function log(·) is always the natural logarithm. 
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Incomplete gamma function: For a parameter a, the lower incomplete gamma function 
regularized lower incomplete gamma function are Z x γ(a, x)

ta−1γ(a, x) := e −tdt and P (a, x) = 
0 Γ (a) 

respectively. P (a, x) can be used for the closed formula of the high-dimensional Gaussian 
integral. Z Z � � � � 

2πk/2 ρ1 1 k πρ2 k πρ2 
−πkxk2/s2 −πr2/s2 
e dx = e r k−1dr = γ , = P , . 

k 2 2 
Bk (ρ) s skΓ (k 

2 ) 0 Γ (k 
2 ) 2 s 2 s

(6)Z 
1 x xa 

By the relation P (a, x) ≤ ta−1dt = , we can bound the inverse function 
Γ (a) 0 aΓ (a)

of P from lower: 
P −1(a, x) ≥ (aΓ (a)x)1/a. (7) 

Beta distribution and incomplete beta function: For a, b > 0, the beta distribution 
B(a, b) is defined by the probability density function 

xa−1(1 − x)b−1 

f(x; a, b) = . 
B(a, b) 

Its cumulative distribution function is given by the incomplete beta function: Z x 

Ix(a, b) := 
1 

z a−1(1 − z)b−1dz, 
B(a, b) 0 

and its inverse function is defined by x = Iy 
−1(a, b) ⇔ y = Ix(a, b). Both functions are strictly 

increasing from [0, 1] to [0, 1]. 
A bound Z x a 

Ix(a, b) ≤ 
1 

z a−1dz = 
x

B(a, b) 0 a · B(a, b) 

holds and thus 
I−1 
x (a, b) ≥ (aB(a, b)x)1/a . (8) 

Fact 1 Suppose (x1, . . . , xm) ← Sm(1). Then, x21 + · · · + x2 follows the beta distribution of � � k 
k m−kparameters (a, b) = 
2 , 2 . Thus, � � R C k m−k 

2 2� � k m − k x −1(1 − x) −1dx2 2 0Pr x1 + · · · + xk ≤ C = IC , := 
m−k . 

(x1,...,xm)←Sm(1) 2 2 B(k , )
2 2 

In particular, (x1, . . . , xm−2) follows the uniform distribution in Bm−2(1), which implies 
the following formula. � � � � k m + 2 − k 

Pr x 2 · · + x 2 ≤ C = IC ,1 + · k 
(x1,...,xm)←Bm(1) 2 2 

. 
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A.1.2 Basics on lattices 

This section is an outline of lattices which are used to construct our theory. For more 
fundamental explanations and backgrounds, readers should refer the textbooks [13, 34]. 

For a set of linearly independent vectors b1, . . . , bn ∈ Qm, the lattice is defined by the set 
of all the integer linear combination: ( )

nX 
L(b1, . . . , bn) = aibi : ai ∈ Z . 

i=1 

The ordered set (b1, . . . , bn) is called a basis of lattice. For a basis, its Gram-Schmidt Pi−1basis is defined by recursively b∗ 
1 = b1 and b∗ 

i = bi − j=1 µi,j bj 
∗ where µi,j = hbi, b∗ 

j i/hb∗ 
j , b

∗ 
j i 

for i = 2, . . . , n. The new basis b∗ 
1, . . . , b

∗ 
n that are orthogonal to each other spans the same 

space to the original basis: ( ) ( )Xn nX 
span(L) := wibi : wi ∈ R = xibi 

∗ : xi ∈ R . 
i=1 i=1 P nThus, any lattice point v = can be represented by using Gram-Schmidt basis: P i=1 aibi 

v = n xib
∗. For this, the j-th projection is i=1 i 

nX 
πj (v) = xib ∗ 

i . 
i=j 

The volume of lattice vol(L) is defined by 

nY 
| det(L)| = kb ∗k.i 

i=1 

Hard lattice problems: For a lattice L, we denote by λ1(L) the smallest nonzero norm of 
points in L, i.e., the length of the shortest vector. The problem for searching v ∈ L such that 
kvk = λ1(L) is called the shortest vector problem (SVP). The approximate Hermite shortest 
vector problem (HSVPα) [21] is the problem of finding vector v shorter than α · vol(L)1/n. 
The bounded distance decoding (BDD) problem 3 for a given lattice basis B, target point t 
and the distance d, is the problem of finding a lattice point v such that kv − tk ≤ d. 

Gaussian heuristic [43, Section. 3]: Consider a set S ⊂ span(L) with a finite volume: 
vol(S) < ∞. The Gaussian heuristic assumption claims that the number of lattice points 
in S is approximately given by vol(S)/vol(L). In particular, we can see λ1(L) is close to 
` = Vn 

−1/n
vol(L)1/n so that Vn(`) = vol(L). We denote this length by GH(L) and call it the 

Gaussian heuristic length of L. 
3 The standard version of BDD is defined by using the shortest vector length λ1(B); see, for example Lyubashevsky 
and Micciancio [29]. Throughout this paper, we use this notation by following the work of Liu and Nguyen [27]. 
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Dual lattices: For a lattice L, its dual lattice L× is defined by the set 

L× = {w ∈ span(L) : ∀v ∈ L, hv, wi ∈ Z}. 

For the basis matrix B = (b1, . . . , bn) ∈ Rm×n , its dual basis matrix D = (d1, . . . , dn) 
satisfies BT D = I. Explicitly written, D = B(BT B)−1 in general and D = (BT )−1 for the 
square matrix B. 

Fact 2 Let (dn, . . . , d1) be the reversed order of dual basis of (b1, . . . , bn). Its Gram-Schmidt 
orthogonalization (d? , . . . , d?) satisfies d? = b∗/kb∗k2 .n 1 i i i 

Thus, kd?i k = 1/kb∗ 
i k holds and it deduces vol(L×) = 1/vol(L). The Gaussian heuristic 

over the dual lattice predicts that 

λ1(L
×) ≈ V −1/n = V −1/n 

n vol(L×)1/n 
n vol(L)−1/n. 

Lattice basis reduction: Since the celebrated LLL algorithm [25], a series of lattice reduc-
tion algorithm has wide applications in many area. In general, such an algorithm selects a 
suitable unimodular matrix U for given lattice basis matrix B, update the basis by multi-
plication: B ← B · U . In this paper, we focus on these algorithms as the approximate SVP 
algorithm as [14,40,42,43]. The strongest lattice reduction algorithm finds the shortest vec-
tor at the first vector b1 of basis. The Gaussian heuristic suggests the practical lower (resp. 
upper) bounds of kb1k (resp. kb∗ 

nk), that is, for a majority of random lattices, its reduced 
basis satisfies 

kb1k > GH(L) = Vn 
−1/n · vol(L)1/n and kb ∗ 

nk < GH(L×) = Vn 
1/n · vol(L)1/n. 

We also claim the following assumption to prove Lemma 1 in Section A.3.2, which is a 
bit stronger than the original Gaussian heuristic. 

Assumption 1 For almost all lattices and its reduced basis (b1, . . . , bm), its projections all 
satisfy 

k)1/nkbn∗ k < GH(L×) = Vn 
1/n · (kb1k · · · kbn∗ 

for a reasonable range of n, such as (3/4)m ≤ n ≤ m. 

Root-Hermite factor and geometric series assumption: From the experimental ob-
servations by Gama, Nguyen and Stehlé [21, 33] for lattice reduction algorithms that work 
on any lattice dimension n, there exists a constant δ0 so that the output of lattice reduction 
algorithm over random lattices satisfies kb1k ≈ δ0 

nvol(L)1/n. This δ0 is called the root Hermite 
factor of the algorithm. We call the basis is δ0-reduced if kb1k ≤ δ0 

nvol(L)1/n holds, thus, it 
is a solution of the HSVPδn problem.

0 

Depending on varieties of algorithms, the graph of Gram-Schmidt lengths kb∗ 
i k have 

a variety if they all achieve the same root Hermite factor δ0. However, they are typically 
concave curves close to a line. Schnorr’s geometric series assumption (GSA) [41] claims that 
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||bi ∗||2 is approximated by ||b1||2ri−1 by a constant r < 1. Hence, each of Gram-Schmidt 
lengths of a δ0-reduced basis can be approximated by 

−4n
2i−1−n 

n−1
4||b ∗|| = r vol(L)1/n where r = δ . (9)i 0 

We call the sequence 

(||b ∗||, . . . , ||b ∗ ||) = (r(1−n)/4vol(L)1/n, . . . , r(n−1)/4vol(L)1/n)1 n

the δ0-GSA basis, and sometimes we denote it by Bδ0 , which is an abused notation because 
it is not a lattice basis. 

This assumption has been used to estimate the practical complexity of lattice problems in 
some published works [20,26]. However, for highly reduced lattice bases, the lengths kb∗ 

i k do 
not follow a line in the last indexes. Such phenomenon is justified by the Gaussian heuristic. 
Hence, it is not reasonable to estimate the expected complexity by using GSA. On the other 
hand, we will demonstrate it can be used to estimate a lower bound in Section A.3. 

A.1.3 Lattice-based attack against LWE 

Definition 1. (Search learning with errors (LWE) problem with Gaussian error) Fixing the 
problem parameter n, m, q ∈ N and α ∈ R, the challenger generates random vectors ai ∈ Zn

q 

(i = 1, . . . ,m), a secret vector s ∈ Zq
n, and a random gaussian noise vector e ∈ Zm whose 

coordinates are independently and randomly sampled from the discrete gaussian distribution 
whose probability density function at i ∈ Z isDs 

−πi2/s2 
e

p(i) = P∞ (10) 
j=−∞ e

−πj2/s2 . 

Then, the adversary gets pairs (ai, bi = hai, si + ei mod q) ∈ Zq
n × Zq for i = 1, . . . ,m 

and tries to recover the secret vector s. 

For the uniqueness of the solution, the number of vectors m is usually taken much larger 
than n. The primal attack for LWE which we will consider in the later section is converting 
the instance to a BDD instance with a lattice of rank m0 ≤ m which is selected by the 
attacker to minimize the cost. 

We introduce an outline of the primal attack. From the instance, suppose we pick some 
vectors and construct a matrix A ∈ Zn

q 
×m0 by concatenating a1, . . . , am0 . Then, As + e = 

b (mod q) holds and there exists an integer vector w ∈ Zm
q 
0 
, the equation can be expressed 

by As + qw + e = b. Thus, the unknown vectors s and w satisfy � � 
s 

[A qI] + e = b 
w 

and if the error vector is short, there exists a point of lattice spanned by the columns of 
0×(m[A qI] ∈ Zm 0+n) close to b. Since the basis given by the matrix is degenerate, it needs 

21 



to reconstruct the independent vectors for which we know an efficient method. Therefore, 
the LWE problem is regarded as a variant of BDD problem whose distance is kek. Since the 
distribution of kek is well-known, we can take an appropriate bound so that the error vector 
is shorter than it with high probability. 

A.1.4 Enumeration algorithm and cost estimation 

We give a brief overview of the lattice vector enumeration algorithms by Kannan [23], 
and Fincke-Phost [18], pruned enumeration by Schnorr [43], and rigid analysis under the 
Gaussian heuristic assumption by Gama-Nguyen-Regev [22]. 

For a given lattice basis (b1, . . . , bm), suppose we have data of Gram-Schmidt vectors 
b∗ and Gram-Schmidt coefficients µi,j with sufficient accuracy. The enumeration algorithm i P 
finds combination of coefficients ai such that v = i

n 
=1 aibi ∈ L is shorter than a threshold 

radius c. It is easy to convert the coefficients to the lattice vector. 
The standard pruned enumeration algorithm takes as input the Gram-Schmidt vectors 

and coefficients, thresholding radius c, and pruning coefficients 0 < R1 ≤ . . . ≤ Rm = 1. It 
searches the (possibly infinite) labelled tree of depth m. Each node at depth k is labelled 
by a vector v ∈ Rm and the projective length kπm−k+1(v)k, and it has children labelled by 
vectors v + am−kbm−k (am−k ∈ Z). The root has the zero vector. Hence, every node at depth P mk has the label aibi. The algorithm carries out the depth-first search and pruning i=m−k+1 
the edge when the projective length exceeds c · Rk at depth k to limit the searching space. 
For the detailed algorithm and efficient implementation, see for example [22, 42]. 

We remark that it can be easily extended to the algorithm for the BDD problem [27]; 
the projective length corresponding to the label v is changed to kπm−k+1(v − t)k where t is 
the target vector. 

These enumeration algorithms output all lattice vectors satisfying kvk ≤ c (or kv−tk ≤ c) 
if there is no pruning, i.e., Ri = 1 for all i. 

Cost estimation under the model by Gama-Nguyen-Regev [22]: They gave models 
and efficient techniques for analyzing success probability and complexity for the pruned 
enumeration. For given searching radius c and pruning coefficients, The space searched by 
the above tree-searching algorithm at depth k is 

{v ∈ Rk : kπk−i+1(v)k ≤ c · Ri for i ∈ [k]}( )
m mX X 

2 (11)
= xj b ∗ : x kb ∗k2 ≤ (c · Ri)

2 for i ∈ [k] .i j j 

j=m−k+1 j=m−i+1 P 
Thus, by using the appropriate rotation that transforms the point m xj b

∗ into j=m−k+1 i 

(xm−k+1kb∗ k, . . . , xmkbm∗ k), we can find that the searching space is the rotation of the m−k+1

object ( )X̀ 
(x1, . . . , xk) ∈ Rk : xi 

2 < (c · R`)
2 for ∀` ∈ [k] . 

i=1 
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For simplicity, one can define the set Ck as below ( )X̀ 
Ck = (x1, . . . , xk) ∈ Rk : x 2 

i < R` 
2 for ∀` ∈ [k] . (12) 

i=1 

By the gaussian heuristic over the projective sublattice πm−k(B), the number of lattice 
points in the space (11) is 

ckvol(Ck)Q ,m kb∗ki=m−k+1 i 

and is the approximation of the number of touched nodes at depth k. Therefore, the cost of 
enumeration, which is defined by the total number of nodes touched by the tree searching 
algorithm, is given as follows. 

m
1 X ckvol(Ck)

N = Q . (13)
2 m kb∗ 

i=m−k+1 i k k=1 

Note that the factor 1/2 comes from the symmetry in the shortest vector computation, and 
it is vanished when we consider the closest vector problem and its variants. 

A.1.5 Complexity measurements 

Several measurements have been proposed for security estimation whereas our estimation 
is based on the number of nodes searched in the enumeration tree [22,27]. However, we need 
to be careful to compare other measurements such as computing time in seconds [4, 26] or 
the number of logical gates. 

A typical efficient implementation of tree searching algorithm needs to compute the 
integer linear combination of Gram-Schmidt coefficients 

mX 
yiµi,m−k+1 (14) 

i=m−k+1 

by floating numbers with some accuracy to check whether the square of projective length 
kπm−k+1(v)k2 = s2 + (computed term in above k − 1 terms ) exceeds the bound. That is, 
the complexity to check a node at depth k includes k + 1 multiplication, (k − 1) + 1 addition 
and 1 comparison operations over floating numbers. Denoting the cost depending on each 
measurement for a node at depth k by CostMeasure(k), the complexity is evaluated as 

m
1 X ckvol(Ck) · CostMeasure(k)

ECModel,single,Measure(B; params) = Qm . (15)
2 kb∗ki=m−k+1 ik=1 

Here, B and parmas are respectively the lattice basis and given parameters for models such 
as success probability. 
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Since our target is the lower bounds, we provide how many costs are required at minimum 
in each unit to process one node in the searching tree. In other words, we propose how to 
bound CostMeasure(k) from lower for Measure ∈ {gates, time}, which means that in the 
measure of number of logical gates as required in the NIST’s criteria [32], and in the single-
thread CPU time. 

Below we assume that floating point numbers with a suitable precision are used to ap-
proximate and compute the Gram-Schmidt coefficients and lengths. 

Computing time in seconds: To the best of our knowledge, the currently known fastest 
implementation for lattice vector enumeration can process about 5.0 · 107 nodes per second 
in a single thread in a practical dimension about 100. (A bit less than 6.0 · 107 in [7] and 
about 3.3 · 107 in [31]). 

On the other hand, since the latest CPU can carry out many floating point operations 
per a cycle, a highly optimized implementation for each CPU can be faster. For example, the 
latest Intel CPU has two fused multiply add (FMA) units that can compute in one clock the 
vector multiplication operation (a1, . . . , a8) · (b1, . . . , b8) 7→ (a1 · b1, . . . , a8 · b8) and vector sum P8operation (a1, . . . , a8) 7→ i=1 ai over eight 64-bit floating point numbers. Thus, the sum 
(14) at depth k can be computed in 2dk/8e cycle clocks in theory that neglects the speed of 
memory transfer. Assuming the computation of squaring and comparison can be done in 2 
cycle clocks, the total clock cycles need to process the node at depth k is at least 2dk/8e + 2. 
Furthermore, since recent common CPUs can work in about 5GHz clock at maximum in a 
standard environment, the timing cost lower bound would be 

Costtime(k) = 2.0 · 10−10 · (dk/8e + 2) (16) 

This is about 10 times faster than the known fastest implementation for dimensions satisfying 
(dk/8e + 2) = 10. 

Hence, substituting it to (15), we get 

X c
m kvol(Ck) · (dk/8e + 2) 

ECModel,single,time(B; params) > 10−10 · Q [sec]. (17)m kb∗ 
i ki=m−k+1k=1 

and will give our theoretical lower bound by providing inequality for vol(Ck). 

Number of logical gates: By the argument in Section A.3.2, we can claim the minimum 
dimension n used in the lattice reduction, which is slightly smaller than the whole lattice 
dimension m in enumeration. The experimental heuristic analysis by Nguyen-Stehlé [33, 
Heuristic. 4] claims that d = 0.25n + o(n) bits are necessary for the mantissa in the floating 
point operation 4 to carry out the LLL algorithm. Since it has a small order term, considering 
a margin, we assume that d = b0.2nc bits is the lower bound of necessary precision. 

We estimate the number of necessary logical gates to treat this precision of floating point 
numbers by the following rule. To carry out the addition (resp. the multiplication) of floating 

4 This is not the same as the bit-size of floating point numbers. For example, the standard 64-bit floating point 
number has 53-bit length mantissa. 
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point numbers with d-bit mantissa, the necessary size of circuit can be bounded by the d-bit 
adder (resp. multiplier) respectively. A simple d-bit adder consists of d full-adders and each 
one has typically 5 logical gates. Also, a simple d-bit times d0-bit multiplier also consists of 
d · d0 full adders. Since the coefficients yi in the sum (14) are typically small integers, we 
assume they can be represented by 8 bits. Hence, a possible logical gate to compute summing 
computation (14) includes k multiplication of d-bit numbers and d0 = 8 bit integers, and 
k − 1 addition of d-bit numbers. Totally, it requires 

Costgates(k) := k · d · 8 · 5 + (k − 1) · d · 5 = 45kd − 5d = 9kn − n (18) 

logical gates at least. Again, substituting its local cost to (15), we obtain 
m

1 X ckvol(Ck) · (9km − m)
ECModel,single,gates(B; params) > Qm . (19)

2 kb∗ki=m−k+1 ik=1 

and the theoretical lower bound will be provided via our lower bound for vol(Ck). 

A.1.6 Our complexity models 

We define several models to discuss the complexity of enumeration algorithm. From 
now on, we use ECModel,Alg,Measure(B; params) to denote the optimal enumeration cost 
(15) where the target model Model ∈ {prob, many, LW E}, usage of enumeration algo-
rithm Alg ∈ {single, multi}, and complexity measurement Measure ∈ {nodes, gates, time}, 
which will be defined in this section. Moreover, we will use UBModel,Alg,Measure(B; params) 
and LBModel,Alg,Measure(B; params) for the upper bounds (in Section A.5.1) and the lower 
bounds (in Section A.2), respectively. 

Particularly, we will use LBmany,multi,Measure(B; N = 1, c) for the lower bound of lattice 
reduction algorithm and use LBLW E,multi,Measure(B; p, s) for the lower bound of attacking 
LWE problem and our parameter setting. 

In the approximation setting such as the approximate SVP, there exist many target points. 
By the Gaussian heuristic, the number of lattice points shorter than c within the searching 
area c · Ck is about N = cmvol(Cm)/vol(L). Thus, the best enumeration algorithm expected 
to find N lattice points is given by best combination of (R1, . . . , Rm) that minimizes (15) 
subject to that vol(Cm) ≥ Nvol(L)/cm. We denote this cost by ECmany,single,Measure(B; N, c). 
where single denotes the single usage of enumeration subroutine, B is the input lattice 
basis, and Measure ∈ {nodes, gates, time} means that we use CostMeasure(k) to measure 
the complexity. 

The multiple usage of enumeration subroutine is considered by Gama-Nguyen-Regev [22]. 
For a given number N of wanted target points, one can run M trials of enumeration with a 
small target number N/M which might not be an integer. The total cost is the sum of (M −1) 
randomizations, (M − 1) lattice reductions, and M enumerations with the low probability. 
We denote such cost by 

ECmany,multi,Measure(B; N, c) 
:= minM [(M − 1) · Cost(LatticeReduction) + M · ECmany,single,Measure(B; N/M, c)]. 
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Hence, we finished the definition of ECmany,Alg,Measure(B; N, c). 
Another interesting situation is the unique setting. It is a special situation of BDD prob-

lem with instance (B, t) where the distribution D of error vector e = t − v is known. In the 
situation where we want to recover the error, searching radius is not fixed since the range 
of error distribution is not limited in general. Suppose we have an optimized radius and 
bounding coefficients which derives the searching space ( )X̀ 

Um = (x1, . . . , xm) : x 2 
i < T i 

2 = (cRi)
2 for ∀ ` ∈ [m] . 

i=1 

Then, the success probability of the enumeration is given by the integral of fD(x) over the 
searching space: Z 

Pr [x ∈ Um] = fD(x)dx. (20) 
x←D Um 

To analyse the LWE problem, we assume the error distribution is given by the continu-
ous Ggaussian whose probability density function is fLW E (x) = exp(−πkxk2/s2)/sm while a 
typical definition uses the discrete Gaussian. Such assumption makes us the discussion much 
analytic since the continuous density function is rotation invariant and matches the require-
ment of our geometric lemma used for analysis. In other words, with using the radial basis 

−πr2/s2 
function φe(r) = e /sm, we can write fLW E (x) = φe(kxk), and discuss a lower bound 
of cost (13) subject to that the success probability (20) is larger than the given threshold. 

As the approximation setting, we use the notations ECLW E,single,Measure(B; p, s) and 
ECLW E,multi,Measure(B; p, s) to denote the costs about the LWE problem. 

Finally, we introduce the probability model by Gama-Nguyen-Regev [22]. Under the 
reasonable assumption ( [22, Assumption 3]), they assumed that the probability to find a 
vector v with using searching radius c = kvk is given by " # X̀ 

Pr x 2 
i < kvk2 · R` 

2 for ∀ ` ∈ [m] . (21) 
(x1,...,xm)←Sm(kvk) 

i=1 

Hence, the best enumeration algorithm of success probability p0 is given by best combi-
nation of (R1, . . . , Rm) that minimizes (13) subject to that (25) is larger than p0. We denote 
such optimized cost by ECprob,single,Measure(B; p0, c). Also, as the approximation setting, the 
cost under the multiple usage of enumeration algorithm is 

ECprob,multi,Measure(B; p, c) 
:= minM [(M − 1) · Cost(LatticeReduction) + M · ECprob,single(B; p/M, c)]. 

A.2 Bounding cost for pruned lattice vector enumeration 

A.2.1 Single usage of the enumeration algorithm 

In order to bound the cost (15, we need to bound each volume factor vol(Ck) in (13). 
The following geometric lemma has a crucial role. 
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Lemma 4 Let Ck be a finite k-dimensional object, i.e., the k-dimensional volume vol(Ck) < 
∞. Let τk be the radius such that Vk(τk) = vol(Ck). Fix a radial basis function r(x) = φ(kxk) 
where φ(kxk) is a positive decreasing function on the radius: φ(x) ≥ φ(y) ≥ 0 for any 
0 ≤ x ≤ y. Then we have Z Z 

r(x)dx ≤ r(x)dx. (22) 
Ck Bk(τk) 

Noting that similar results where φ(x) is a gaussian function is already known [?, Lemma 
7.1] and [?, Sect. 14.8] in another contexts and they also proved their claim by similar 
strategies. For future discussions, we give the proof for generic φ(x). 

Proof. By Vk(τk) = vol(Ck), it holds that V := vol(Ck \ Bk(τk)) = vol(Bk(τk) \ Ck). Since 
φ(kxk) is decreasing function, we have the inequalities Z Z 

r(x)dx ≤ V · φ(τk) ≤ r(x)dx. 
Ck\Bk(τk) Bk (τk)\Ck 

Hence, Z Z Z Z Z Z 
= + ≤ + = . 

Ck Ck∩Bk(τk ) Ck\Bk (τk ) Ck∩Bk(τk) Bk(τk)\Ck Bk(τk) 

ending the proof. ut 
By using this lemma, we provide the lower bound complexity of the single and multiple 

usages of Gama et al.’s pruned enumeration [22] for the approximation setting and unique 
(LWE) settings. 

Approximation setting: Fixing the pruning coefficients R1, . . . , Rm, the intermediate search-
ing areas Ck are fixed by (12). Suppose we have an optimal set of pruning coefficients. Then, 
for any k ≤ m − 2, Z 

N · vol(L) ≤ vol(Cm) = vol{z ∈ Cm : (z1, . . . , zk) = x)}dx 
cm ZCk 

≤ vol{z ∈ Bm(1) : (z1, . . . , zk) = x)}dx 
Ck 

where the volumes are the (m−k)-dimensional ones defined on the coordinates (zk+1, . . . , zm). 
The latter integrating function � p

Bm−k( 1 − kxk2) if kxk ≤ 1 
r(x) = vol{z ∈ Bm(1) : (z1, . . . , zk) = x)} = 

0 if otherwise 

satisfies the requirement of Lemma 4. Thus, we have Z � � 
k m + 2 − k 

vol(Cm) ≤ r(x)dx = Vm(1) · Iτ 2 , . 
k 2 2Bk(τk) 
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N ·vol(L)By the condition 
cm ≤ vol(Cm), we have the lower bound of the radius s � � 

k m + 2 − k 
I−1τk ≥ , .N ·vol(L)/Vm(c) 2 2 

Substituting this bound with the equation Vk(τk) = vol(Ck) in Lemma 4 to (13), we 
obtain our lower bound for the enumeration to find N vectors shorter than c is given as 
follows: � � ��k/2 

I−1 k m+2−k 
m ckVk(1) Nvol(L) , · CostMeasure(k)X 2 21 Vn(c)

LBmany,single,Measure(B; N, c) = Qn . 
2 kb∗ki=n−k+1 ik=1 

(23) 
This is valid for the parameters satisfying Nvol(L) ≤ Vm(c). 

Learning with errors setting: Since each Ck is the k-dimensional projection of Cm, we 
have the inequality on the success probability. When the distribution is continuous gaussian 
Cs, we have the relation 

(20) = Pr [x ∈ Cm] < Pr [(x1, . . . , xk) ∈ Ck] = Pr [(x1, . . . , xk) ∈ Ck] . 
x←Cm x←Cm x←Ck 

s s s R 
The RHS is 

Ck 
φe(kxk)dx where φe(kxk) = exp(−πkxk2/s2)/sk and the integral func-

tion meets the requirement of Lemma 4. Thus, combining with (6), we have the inequality Z � � 
k πτ 2 

p < φe(kxk)dx = P , k 

2 s2 
Ck 

which implies the lower bound of the radius s � � 
s k 

τk ≥ √ P −1 , p . 
π 2 

Hence, substituting this into (13) we obtain our lower bound as 

√ � � �� k X P −1 k 21 
m

(s/ π)kVk(1) , p · CostMeasure(k)Q 2LBLW E,single,Measure(B; p, s) = m . (24)
2 kb∗ki=m−k+1 ik=1 

Probability setting: In [22], they assume the probability model for the shortest vector 
problem. We introduce this model to use in the computer experiments to justify our new 
assumption (Assumption 2) although this model does not used for LWE parameter setting. 
Under the reasonable assumption ( [22, Assumption 3]), the probability to find a vector v 
with using searching radius c = kvk is given by " # X̀ 

2 < kvk2Pr xi for ∀ ` ∈ [m] . (25)· R` 
2 

(x1,...,xm)←Sm(kvk) 
i=1 
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Then, the probability (25) is bounded upper as " # X̀ 
(25) ≤ Pr xi 

2 < kvk2 · R` 
2 for ∀ ` ∈ [m − 2] 

x←Sm(kvk) 
i=1 

(by relaxed condition) (26)" # X̀ vol(Cm−2) 
= Pr x 2 

i < R` 
2 for ∀ ` ∈ [m − 2] = . 

x←Bm−2(1) Vm−2(1)i=1 

This probability have a relation to the volume of cylinder intersection by s � � s � � 
k m − k k m − k 

I−1 I−1τk ≥ , ≥ , .vol(Cm−2)/Vm−2(1) p2 2 2 2 

Thus, as the same argument to the situation of approximation setting, we obtain our 
lower bound for the enumeration of probability p and radius c: � � �� k 

m I−1 k m−k 21 X ckVk(1) p , · CostMeasure(k)2 2LBprob,single,Measure(B; p, c) = Qm . (27)
2 kb∗ki=m−k+1 ik=1 

A.2.2 Multiple usage of the enumeration algorithm 

Using our lower bound for single usage of enumeration algorithm, we can bound the cost 
of Gama-Nguyen-Regev’s extreme pruning that uses multiple random bases. As mentioned 
in Section A.1.4, the cost of multiple usage is given by 

ECModel,multi,Measure(B; p) = 
minM [(M − 1) · Cost(LatticeReduction) + M · ECModel,single,Measure(B; p/M)] 

where p stands for the success probability or the number of found vectors depending on the 
model. We estimate the lower bound cost by neglecting the cost for the lattice reduction 

ECModel,multi,Measure(B; p) > min[M · LBModel,single,Measure(B; p/M)] (28)
M 

Remark that as we will show in the next section, the lower bound cost of lattice reduction is 
not zero if we start with a random (LLL-reduced) basis. However, in the situation of extreme 
pruning, the complete randomization, for instance, multiplying random unimodular matrix 
to the whole basis can achieve it, is too strong for our goal. Thus, in the sense of algorithm 
optimization, the quality of basis after randomization may not far from the original reduced 
basis if we have a good procedure as [2, Appendix. A] and [17]. This is the reason that we 
neglect the lattice reduction cost here. As we see in below, we do not need to consider the 
number M of used bases in the lower bounds. 

In the three calculations (29), (30) and (31) below, we use the notation C(k) for CostMeasure(k) 
for simplicity. 
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Approximation setting: For the target number N of lattice points that we want to find 
if we use M randomized bases, at least N/M target number is necessary for each basis. It 
should be larger than N/M because of duplication of found vectors. For these parameters, by 
a similar argument as above, the cost is bounded lower by using (23), and by the inequality 
(8), we have 

� � ��k/2 

I−1 k m+2−k 
m ckVk(1) , · C(k)Nvol(L)M M Vm(c) 
X 2 2 QM · LBmany,single,Measure(B; N/M, c) > m2 kb∗ki=m−k+1 i� � k=1 

m k m+2−kXNvol(L) Vk(c) · k · B 
2 , 2 · C(k) 

> Q
4Vm(c) 

m kb∗ki=m−k+1 i" k=1 # 
m m−k

N X Y kb∗k Vk(1) 
� 
k m + 2 − k 

� 
= i · k · · B , · C(k)

4 c Vm(1) 2 2 
k=1 i=1" # " #� � � �m m−k m k

N X Y kb∗ 
i k m + 2 − k N X Y kb∗ 

i k k + 2 
= √ · Γ · C(k) = √ · Γ · C(m − k)

2 c π 2 2 c π 2 
k=1 i=1 k=1 i=1 

:= LBmany,multi,Measure(B; N, c). 
(29) 

Remark that if N is fixed, increasing of c implies the decreasing cost and increasing the 
length of found vectors. 

Learning with Errors setting: We can show the cost lower bound of the primal attack 
by Liu-Nguyen [27] as follows: 

√ � � ��k X P −1 k p 2M 
m

(s/ π)kVk(1) 2 , M · C(k)QM · LBLW E,single,Measure(B; p/M, s) > m2 kbi ∗ki=m−k+1√ k=1 X X (30)p 
n

(s/ π)kVk(1) · k · Γ (k/2) · C(k) p 
n

sk · C(k)
> Q = Qn4 n kb∗k 2 kb∗ki=n−k+1 i i=n−k+1 ik=1 k=1 

:= LBLW E,multi,Measure(B; p, s). 
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� 
Probability setting: For the lower bound for Gama-Nguyen-Regev’s probabilistic model, 
we can show the lower bound by using (27) and (8): h �i k 

k m−km Vk(c) I
−1 , 

2 · C(k)X 2M p/M 2 QM · LBprob,single,Measure(B; p/M, c) > m2 kb∗ki=m−k+1 i� k=1� m k m−k m kπk/2Γ (m−k p X Vk(c) · k · B , · C(k) p X c ) · C(k)
2 2 2Q = Q> m m4 kb∗k 2 Γ (m ) kb∗k 

k=1 i=m−k+1 i k=1 2 i=m−k+1 i (31) 
m k � �XY 

m−kp k m−kπ= kb ∗ 
i k · c 2 Γ · C(m − k)

2Γ (m )vol(L) 2
2 k=1 i=1 #" 

m k � � 
mπm/2 X Yp · c kb∗ 

i k k 
= √ · Γ · C(m − k) := LBprob,multi,Measure(B; p, c)

2Γ (m )vol(L) c π 2
2 k=1 i=1 

where the equality from the second line to the third line holds by swapping index m − k by 
k. 

Concluding these inequalities, we have two remarks. First, we do not need to consider the 
number of randomized bases in the calculation of lower bounds. Second, since they are linear 
functions of probability or the number of target points, the speeding up of extreme pruning 
strategy is bounded by a constant independent from the number of bases and probabilities. 

A.3 Bounding cost of lattice problems 

We introduce our formula to bound the cost of lattice reduction that achieves the root 
Hermite factor δ0. Unlike the argument of enumeration algorithm in the above section, we 
need to add a new heuristic assumption that was supported by our experiments. 

The cost for attackers is typically given by 

Cost(LatticeReduction) + Cost(P ointSearch)
Cost(P roblem) = min . 

Success probability of PointSearch 

Here, the minimum is over all typical lattice reduction algorithms and the pruned lattice 
enumeration algorithm. Parameters in each step are optimized via suitable preliminary sim-
ulations. 

In this paper, we will argue the attacker’s cost to solve a lattice problem in the unique 
setting by 

Cost(P roblem)� � 
Cost(P ointSearch, prob = p)≥ min Cost(LatticeReduction) + 

p (32)� � 
ECModel,multi,Measure(B; p) 

= min CostLR(δ0,m) + . 
δ0,B∈LR(δ0,m) p 

where p is the success probability of point search and LR(δ0,m) denotes the set of output of 
lattice reduction algorithms that achieve the root Hermite factor δ0 in m-dimensional lattice. 
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Our goal is to establish lower bounds of the both factors that depend on only δ0 and 
dimension m. Concretely, we provide two lower bounds 
minδ0,B∈LR(δ0,m)[ECModel,multi,Measure(B; p)] ≥ L1(δ0, m, p) (in Section A.3.1) and CostLR(δ0,m) ≥ 
L2(δ0,m) (in Section A.3.2) in simple closed formulas. Then the minimizing problem in the 
last line of (32) is to be the following form: � � 

L1(δ0, m, p)
Cost(P roblem) ≥ min L2(δ0,m) + . (33) 

δ0 p 

Again we remark that the probability p is canceling out when we analyze under the gaussian 
−1/m2 

model (30). Also, the range of δ0 should be bounded as follows: Vm / δ0 / 1.022 is from 
the gaussian heuristic and the experimental observation in [21]. 

A.3.1 Bounding enumeration cost over a reduced basis 

Fix the root Hermite factor δ0. The cost we want to bound in this section is 

CostEnum(LR(δ0,m)), 

that is, the cost (13) for a given radius and success probability, and the Gram-Schmidt 
lengths of output of a lattice reduction algorithm; kb1k = δ0 

mvol(L)1/m is known but other 
values are unknown. 

To give a simple formula for the lower bound cost, we performed the experiments that 
compare the enumeration cost (13) and the lower bound cost (27) for the practical reduced 
basis B, and the corresponding δ0-GSA basis Bδ0 . Figure 3 and 4 in the experimental section 
show an example of cost comparison. From the observation, we find the costs of GSA bases 
are typically lower than that of the original basis. 

Assumption 2 Let Model be one of prob, many or LW E. For parameters (success probabil-
ity p, searching radius c, gaussian parameter s) in a reasonable range and an output basis B of 
a typical lattice reduction algorithm, the cost of enumeration ECModel,single,Measure(B; params) 
is larger than the lower bound cost of δ0-GSA basis, LBModel,single(Bδ0 ; params) where δ0 = 
(kb1k/vol(L)1/m)1/m. 

Additional explanation on this assumption is necessary. First, this assumption is a com-
bination of experimental observation that ECprob,single(B; p, c) ≥ ECprob,single(Bδ0 ; p, c) holds 
in many situations (see Figure 3) and our theory that proves 

ECModel,single,Measure(Bδ0 ; params) ≥ LBModel,single,Measure(Bδ0 ; params). 

Second, the assumption on the single usage derives the same relation on the multiple 
usage. Actually, for a suitable M , 

ECModel,multi,Measure(B; params) ≥ M · ECModel,single,Measure(B; params/M) 
(34)≥ M · LBModel,single,Measure(Bδ0 ; params/M) = LBModel,multi,Measure(Bδ0 ; params). 
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Accepting the assumption, we can treat lattice bases by only two parameters δ0 and m 
that makes high experimental reproducibility for security estimation. 

Noting that we may be able to consider an artificial counterexample to break this assump-
tion. For example, for an LLL-reduced basis, apply strong BKZ algorithm for its projected 
sublattice π2(b2), . . . , π2(bm). However, we think that typical reduction algorithm used to 
lattice based attack do not have such behaviours. 

A.3.2 Bounding Cost for Lattice Reduction 

This section provides our lower bound formula for the cost CostLR(δ0,m) of lattice 
reduction algorithms that achieves the root Hermite factor δ0. Clearly, 

CostLR(δ0,m) > CostLR(δ0, n) holds for m > n. (35) 

However, there exists the lower bound on the dimension deduced from the Gaussian heuristic, 
i.e., it needs to hold δ0 

m > V m 
−1/m

. If not, it is hard to exist a vector shorter than δ0 
mvol(L)1/m 

and the cost bound is not valid. Throughout this section, we fix m as the smallest integer 
satisfying this inequality, thus, 

δ0 
n < V n 

−1/n holds for integers n < m. (36) 

Except for the LLL algorithm, all the known lattice reduction algorithms for finding 
a vector shorter than c = δ0 

mvol(L)1/m must have at least one calling of an enumeration 
subroutine working over a first sublattice Bn = (b1, . . . , bn) with the radius c and target 
volume vol(Cn) · cn ≥ vol(Bn). Explicitly written, the cost relation is h i 

CostLR(δ0,m) = min CostLR(m, ̀ ñ) + ECmany,multi,Measure(Bn; 1, c) (37)
˜n,` n 

˜where ` n := (kb1k, . . . , kbnk) is the possible sequence of Gram-Schmidt lengths satisfying 
` 1 ≥ δ0 

mvol(L)1/m, and CostLR(m, ̀ ñ) is the minimum cost to find an m-dimensional lattice 
basis Bm such that kb∗ 

i k = ` i for all i ∈ [n]. Also, Bn is the sublattice of Bm having such 
Gram-Schmidt lengths. 

Proposition 1 The subdimension n satisfies n = m under Assumption 1 in the cost model 
(37). 

Proof. Suppose n < m and the enumeration subroutine runs over the sublattice Bn = 
(b1, . . . , bn) and it finds a vector shorter than δ0 

mvol(L)1/m. We show a contradiction. By As-
1 1 n 

n+1 n+1sumption 1 over the sublattice Bn+1, we have kb∗ k < V n+1 vol(Bn+1)n+1 . Thus, kb∗ k <n+1 n+1
1 Q Q1 n 

n+1 n+1 n 
n+1V kb∗kn+1 . Multiplying kb∗k and taking n-th root for both sides, we have n+1 i=1 i i=1 i Q 1 Qn+1 n(n+1) n 

n+1 
i=1 kbi ∗k 

1 

< V n+1 · i=1 kbi ∗k1/n. Since the volume function Vk is strictly decreasing 
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1 1 
n(n+1) n(n+1) 1/n 1 

n+1for large k, the relation Vn+1 < V n = (Vn ) holds and it is bounded upper by 
− n+1 

δ0 
n by using (37). Hence, it derives the induction formula 

n+1 

vol(Bn+1)n+1 δ0 
n < vol(Bn)n . (38) 

1 1 

Thus, 

n+1 m n+ +···+ 
n m−1 )1/mGH(Bn) > δ0 

nvol(Bn)
1/n > δ 0 vol(Bm)

1/m > δ0 
mvol(Bm . 

Therefore, it is difficult to exist a vector shorter than δ0 
mvol(Bm)

1/m in the sublattice Bn if 
n < m. ut 

˜Neglecting cost for lattice reduction in (37), we have CostLR(δ0,m) > CostENUM(m, ̀  m) 
˜where ` m is from a reduced basis so that ` 1 ≥ c. Using Assumption 2 and its multiple version 

(i−1)/2(34), bounded lower by LBmany,multi,Measure(Bδ0 ; N, c) with N = 1 and kb∗ 
i k = r . In 

conclusion, our lower bound for lattice reduction to find a short vector is 

m � �X1 k(k−1) k · π−k/24CostLR(δ0,m) > r · Γ := LBLR(δ0) (39)
2 2 

k=1 

−4n −1/n n−1for the smallest integer n such that δ0 
n > V n and r = δ0 . 

Remark that this is the dimension independent formula as the formulas in previous 
works [4,26]. However, the reason of independence is completely different from them since we 
use the relation (35) while the existing works have used the interpolation of the experimental 
computing time in the fixed dimensions. 

A.4 Our parameters for the LWE problem 

In this section we provide our parameter selection. 

A.4.1 Our parameter setting 

For the problem parameter n, q, s and the lattice dimension m (= number of samples) 
to be optimized, the attack consists of the lattice reduction part to achieve a root Hermite 
factor δ0 and the enumeration step to solve the BDD. By the above argument, our cost 
lower bound under the model (33) is given by setting L1(δ0, m, p) =(30) with the GSA basis, 
and L2(δ0,m) =(39). Therefore, the minimum cost is achieved by minm,δ0 [(39) + (30)] with 
Measure ∈ {nodes, gates, time}. For readability, explicit formula are provided: 

CostLW EMeasure(n, q, s) = " #0n � � mX X k1 k(k−1) 

· π−k/2 k 1 s · CostMeasure(k) (40)
min r 4 · CostMeasure(n 0 − k) · Γ + . 

nk mk−2m−k2 
m,δ0 2 2 2 m 4q rk=1 k=1 
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Table 8. Example estimations for LWE in the Lindner-Peikert parameter [26] by using (40) 
with cost measures Costnodes(k) = 1, Costtime(k) = 2.0 ·10−10 ·(dk/8e+2) and Costgates(k) = 
45kd − 5d = 9kn − n. . 

n q s 
log2 of 
Time [sec.] 

log2 of 
]nodes 

log2 of 
]gates Comments [27] [5] 

128 2053 6.77 -24.0 6.11 21.46 Toy param. 23.6 17 
192 4093 8.87 1.78 30.73 47.48 Low param. 62.8 59 
256 4093 8.35 26.86 55.34 73.15 Medium param., 

claimed as 128-bit security 
105.5 102 

320 4093 8.00 56.00 84.12 102.73 High param. - 147 

136 2003 13.01 -3.78 25.32 41.67 Example param. in [30] - -
214 16381 7.37 -8.14 21.07 37.18 Example param. in [30] - -

for each Measure ∈ {nodes, time, gates}. Here, n0 and r in the bracket are fixed by that the 
0−4n 

0 −1/n0 
smallest integer n0 such that δ0 

n > V n and r = δ0 
n0−1 respectively. 0 

Recall that Costnodes(k) = 1 for counting nodes, Costtime(k) = 2.0 · 10−10 · (dk/8e + 2) 
for measuring single thread time (16), and Costgates(k) = 45kd − 5d = 9kn − n for counting 
number of logical gates (18). 

Table 8 shows revisited cost and parameters introduced in Lindner-Peikert [26]. Since 
they are lower bounds, they are much smaller than the other works for average complexities 
such as [27]. 

Table 9 shows the lower bound complexity for our parameters: s = 3, q = 8192 and 
various LWE dimensions n, which includes the parameters for LOTUS. 

A.4.2 Comparison on the cost of lattice reduction with previous models 

In many existing works, they have given models of the relation between computing time 
and achieved root Hermite factor δ0. We give a short survey as follows. 

Lindner-Peikert [26] estimated log2(tBKZ [sec .]) = 1.8 − 110 from their experiments 
log2(δ) 

using NTL-BKZ for q-ary lattices derived from random LWE instances. They claimed it as 
a practical lower bound line from their curve fitting. However, this model is hard to believe 
since it derives a subexponential algorithm for the LWE problem [4]. 

0.009Albrecht et al. [3] estimated log2(tBKZ [sec .]) = − 27 that is an extrapolation of 
log2(δ)

2 

the points from BKZ 2.0 simulation for the expecting time in [27]. However, this model also 
contradicts to the theoretical upper bound result by Schnorr [40] as we mention below. � � 

log(1/ log δ)Albrecht et al. [2, 4] proposed log2(tBKZ [sec .]) = Θ under the assumption 
log δ 

that we have a β-dimensional SVP oracle that works in time 2Θ(β). 
The comparison among these estimations and our lower bound (39) is summarized in 

Figure 1. Furthermore, experimental estimations can be derived from the SVP challenge 
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Table 9. Our lower bound cost estimation for LWE to set the parameters used in our 
proposals by using (40) with cost measures Costnodes(k) = 1 and Costgates(k) = 45kd − 5d = 
9kn − n. 

n q s log2(]nodes) log2(]gates) Comments 

544 8192 3.0 122.56 141.92 
576 8192 3.0 136.19 155.76 Our lotus-params128 parameter 

(AES-128 and SHA3-256 strength) 
608 
640 
672 

8192 
8192 
8192 

3.0 
3.0 
3.0 

150.24 
164.71 
179.55 

170.01 
184.66 
199.67 

704 8192 3.0 194.77 215.06 Our lotus-params192 parameter 
(AES-192 and SHA3-384 strength) 

736 
768 
800 

8192 
8192 
8192 

3.0 
3.0 
3.0 

210.34 
226.26 
242.49 

230.78 
245.85 
263.23 

832 8192 3.0 259.04 279.92 Our lotus-params256 parameter 
(AES-256 strength) 

contest [39]. Most of the current records are achieved by Kashiwabara and Teruya. We plot 
δ0 derived from their approximation factor and computing single core time that was simply 
adds their claimed number of CPU cores and days. It shows that how danger an extrapolation 
from a small range of experiments is. 

Problem in the estimation by Albrecht et al. [3]: Besides a lack of the dimension 
factor, we find their model contradicts to Schnorr’s result [40]. His block-type lattice reduc-

2(kk/2+o(k) +tion algorithm finds a lattice vector shorter than (6k2)n/2kλ1(L) in time O(n
n2) log max ||bi||). Here k is a parameter in [n] for time-approximation trade off. Letting 
k = n/2, we have a 3

2 n
2 approximation algorithm working in time 2O(n log n). On the other 

3 2 3hand, the approximation factor n corresponds to δn = n2Vn(1)
−1/n = Θ(n2.5) and thus 

2 0 2 
nlog2(δ0) = Θ( log

n

2 
). For this approximation factor, Albrecht et al.’s model predicts that time 2 

2/ log2 
0is 2Θ(1/δ2) = 2Θ(n 2 n). This is exactly larger than Schnorr’s theoretical bound. Therefore, 

the hardness estimation based on this in large dimensions would be overestimate and the 
parameter is smaller than the necessary one for security requirement though it is very simple 
and clearly reproducible. 

The same problem has been occurred in [15] since they have used the estimation of [3]. 
For example, our lotus-param128 parameter will have the strength around 2268 seconds to 
attack if using [15]. Similarly, lotus-param192 and lotus-param256 parameters will have 
the strength around 2379 and 2504 seconds to attack, respectively. Speaking reversely, our 
parameters are very conservative. 

Space realizability of estimation by Albrecht et al. [2, 4]: In this estimation, they 
assume that one can solve the β-dimensional shortest vector problem in 2Θ(β). This is a rea-
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Fig. 1. Comparison among several models to achieve the root Hermite factor δ0. Our esti-
mation LBLR(δ0) in (39) computing with Costtime(k); [LP2011] is [26]; [ACFFP2015] is [3]; 
[APS2015] is [4] with the constant c = 0.05. Also, the orange circles indicates the recent 
records in 130 to 150 dimensions in SVP challenge. 

sonable assumption in “time complexity” since the latest sieve algorithm by Bai-Laarhoven-
Stehlé [9] works in 20.4812m+o(m) times and 20.1887m+o(m) spaces. However, considering space 
complexity, it is hard to believe to attack a 256-bit security of the LWE problem. That is, if 
0.4812m = 256, the space requirement becomes about 2100. One cannot treat such gigantic 
data storage even in the post quantum era. For example, the total amount of the data in the 
world is about 16.1 zettabytes ≈ 274 bytes in 2016, and it grows to be 10 ≈ 23.3 times larger 
in the next 10 years [1]. From this viewpoint there could not exist an entity or organization 
to treat 2100 bytes to attack lattice based schemes. 

A.5 Computer experiments 

A.5.1 Sharpness of our bound 

We perform our computer experiment to compare our lower bound, the estimation by 
the method in [22] and an upper bound by setting artificial bounding function. Recall that 
the paper by Gama-Nguyen-Regev [22] provided an efficient method to compute good upper 
and lower bounds for the cost (13) and probability (25) for given parameters. We use them 
as subroutines. 

Systematic Upper bound: To show the sharpness of our lower bound, and to show that our 
subroutine to find ECprob,single,nodes(B; p, c) works well, we give a method to compute upper 
bound cost UBprob,single,nodes(B; p, c). In contrast to the lower bound situation, a possible 

37 



upper bound can be computed by setting feasible bounding coefficients. Thus, using a finite 
set of bounding coefficients whose probability is larger than p, an upper bound is given by 
the minimum cost among the coefficients. For this purpose, we define the pruning coefficients 
in dimension m parametrized by α ∈ R and j ∈ [m] by Ri(α, j) = min((i/j)α , 1). 

For given parameters (||b∗||, . . . , ||b∗ ||, c, p), and for each integer j, we can compute α1 n

so that the lower bound probability is p by the binary search. Then, by computing the 
minimum of upper bound cost among all j, we can obtain an upper bound of enumeration 
cost of probability p. 

Comparison: Figure 2 shows the comparison among the systematic upper bound 

UBprob,single,nodes(B; p, c), 

cost of pruned enumeration ECprob,single(B; p, c), lower bound cost of single usage 

LBprob,single,nodes(B; p, c) 

and the lower bound for multiple usage LBprob,multi,nodes(B; p, c). We use the radius c = 
GH(L) and various success probability. We used two bases: a PBKZ-60 reduced 180 dimen-
sional basis and a PBKZ-20 reduced 120 dimensional basis. The lattice bases are published 
instances of SVP challenge, and PBKZ-β stands for Aono et al.’s progressive BKZ [7] with 
target blocksize β. In 180 dimension, for p < 10−4, we can see ratio 

ECprob,single,nodes(B; p, c)/LBprob,single,nodes(B; p, c) 

is less than 104 . 

A.5.2 Evidence for our Assumption 2 
Recall that Assumption 2 claims that 

ECModel,single,Measure(B; params) ≥ LBModel,single,Measure(Bδ0 ; params) 

for each Model ∈ {prob, many, LW E} and Measure ∈ {nodes, gates, time}, reasonable 
parameters, and δ0 = (kb1k/vol(L)1/m)1/m. 

Figure 3 shows that the comparison among ECprob,single,node(B; p0 = 10−3, c = GH(L)), 
ECprob,single,node(Bδ0 ; p, c) and LBprob,single,node(Bδ0 ; p, c) for many reduced basis. We can see 
the assumption holds in the all cases. 

Additional experiments over several probabilities and dimensions are shown in Figure 4. 
These graphs, shows the ratios 

ECprob,single(B; p0, c) ECprob,single(B; p0, c)
and (41)

ECprob,single(Bδ0 ; p0, c) LBprob,single(Bδ0 ; p0, c) 

in red and blue curves respectively. Assumption 2 claims that the right values (blue curves) 
always above 1. For a majority of situations, ECprob,single(B; p0, c) > ECprob,single(Bδ0 ; p0, c) 
holds and for all situations in our experiments, ECprob,single(B; p0, c) > LBprob,single(Bδ0 ; p0, c) 
holds. In the bottom-right picture, we used our version of primal-dual progressive BKZ 
algorithm that is a näıve combination of the primal-dual BKZ [31] and the progressive 
BKZ [7]. 
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Fig. 2. For two lattice bases, compare the systematic upper bound UBprob,single,nodes(B; p, c), 
cost of pruned enumeration ECprob,single,nodes(B; p, c), lower bound cost of single usage 
LBprob,single,nodes(B; p, c), and the lower bound for multiple usage LBprob,multi,nodes(B; p, c). 
We used a PBKZ-60 (resp. PBKZ-20) bases of random 180-dim. (resp. 120-dim) lattice. 

Fig. 3. Comparison of various simulated costs between real reduced basis and equivalent 
GSA basis. (Left) 200-dimensional bases reduced by progressive BKZ [7] with many block-
sizes; (Right) For LLL reduced basis of many dimensions; In all experiments, parameters are 
p = 10−3 and c = GH(L). 
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Fig. 4. Experiments to compare the ratios (41) for various lattice dimension m, searching 
radius c, success probability p and target reduced level β of progressive BKZ. (Top-Left) Ex-
periments using 12 bases, m = 200, c = GH(L), p = 10−3 and various β-reduced bases; (Top-
Right) Experiments in using bases, c = GH(L), p = 10−3, β = 40 and various dimensions; 
(Bottom-Left) Experiments using 16 bases, m = 200, c = GH(L), β = 40 and various success 
probabilities; (Bottom-Right) Experiments using 16 bases, m = 200, c = GH(L), p = 10−3 . 
The bases are output of our preliminary version of primal-dual progressive BKZ. 
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