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Quantum info-communication technologies directly control the 

quantum mechanical properties of photons. Then one can go 

beyond the capabilities of conventional technologies. For example, 

quantum communication can achieve the ultimate channel 

capacity of optical link maximizing the rate in bits/s/Hz/photon. 

Quantum cryptography can ensure unbreakable secure 

communications even by any future technologies. These two have 

been studied separately so far. Recently, however, one has started 

to see a new merged scheme, where both efficient transmission 

and provable security can be realized simultaneously, reaching 

the secrecy capacity as the maximum rate in secure 

bits/s/Hz/photon. We present the latest results on this new scheme, 

especially on theory and implementation in space. 
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I. INTRODUCTION 
Deep space optical communications will potentially 

provide 10 to 100 times larger data links over present radio 
frequency (RF) communications, because optical 
communication systems have a wider bandwidth, a larger 
capacity, lower power consumption, more compact equipment, 
greater security against eavesdropping, and smaller 
interference, compared to RF communications [1]. One typical 
feature of space optical communications which most differs 
from RF communications is that the link is quantum limited. 
Received optical power is very limited, usually at the photon 
level. In addition, photon energy in the optical domain is much 
larger than that in the RF domain, surpassing the energy scale 
thermal and background noises in the communication systems. 
Therefore quantum mechanical effect, such as discrete nature 
of light, becomes essential. Space optical communications 
systems must be designed based on quantum communication 
theory.  

In this paper we first discuss an issue of the channel 
capacity of optical communications system. We show the 
attainable limit of the channel capacity, and compare several 
practical schemes from the viewpoint of how they can get 
close to the channel capacity limit.  We then discuss an issue 
on how to realize high capacity and secure links. We 
particularly concern physical layer cryptography which can 
ensure the provable security, that is, the security which cannot 
be broken by any powerful computing technologies. Physical 
layer cryptography is based on appropriate coding techniques 
designed by considering physical properties of the main 

channel between the sender and the receiver, and the wiretap 
channel to an eavesdropper.  

Quantum cryptography or more specifically quantum key 
distribution (QKD) is a typical example of physical layer 
cryptography. Demonstrating QKD in Space is one of grand 
challenges in the field of quantum and optical communications. 
However, the final key rates are expected to be very poor for 
securing practical data links. One might naturally ask whether 
QKD is the best solution for securing optical links in Space. 
QKD assumes that an eavesdropper (Eve) can have unlimited 
physical abilities and computational power. Under this 
extreme assumption, the unconditional security is ensured in 
principle. However, this requirement is sometimes too much. 
In the case of space optical links in a line of sight between the 
sender (Alice) and the receiver (Bob), if Eve is in the channel, 
then she is easily visible. Alice and Bob can tell Eve is there. 
So what Eve should do is to hide from the legitimate users 
away from the channel, and try to collect scattered light to get 
information from Alice. Thus one may limit the ability of Eve. 
Then in such a degraded condition for Eve, Alice and Bob can 
realize a much higher transmission rate with the probable 
security. Theoretical predictions in this line are presented.   

II. CHANNEL CAPACITIES OF SPACE OPTICAL 
CHANNELS 

A. Channel capacity formula 

The channel capacity in classical communication theory by 
Shannon is determined by the noise power of the system N and 
by the amount of available signal power P and bandwidth W 
as  

 CW log PN W 

where  is the channel transmittance. The extension of this 
formula to the quantum domain has been studied for many 
years, and today we know the following formula  [2] 

  

where g(x)=(x+1)log(x+1)-x log x is the entropic function, and 
Nk is the average photon number for mode k, which is 
determined by the power constraint  
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  

where h is the Plank constant and fk is the frequency of mode k. 
This formula specifies the channel capacity of a linear loss 
optical channel under the power constraint, after the fully 
quantum mechanical optimization of encoding and decoding 
strategies are made. The physical scheme to attain this 
capacity is also known. The optimal encoding is given by the 
dense coherent modulation, which is completely conventional 
coherent communications technology. The optimal decoding, 
on the other hand, essentially requires utilizing quantum 
effects. Namely this should consists of quantum computing 
with coherent states to transform the received codeword state 
into an appropriate quantum state, and the final measurement 
on it afterward. This is referred to as quantum collective 
decoding, or simply quantum decoder [3, 4]. 

B. Numerical simulation of space optical communications 

Figure 1 shows the channel capacities for various schemes 
for space optical communications in terms of transmission 
rates in Gbits/sec versus the transmission distance [5]. The 
line on the top entitled “All band quantum decoder” indicates 
the ultimate capacity of a lossy optical channel when quantum 
decoder can be implemented which can work on all bands of 
electromagnetic field modes. This ultimate capacity can be 
simply expressed as   as  

  

No one can go beyond this limit, no matter how much capacity 

one wants. Thus quantum theory tells us that, we will be able 

to extend a Tbps link to Mars from Earth if such an all band 

quantum decoder is available.  

Fig. 1. The channel capacities for various schemes for space optical 

communications in terms of transmission rates in Gbits/sec versus the 
transmission distance. 

 

The line on the next top titled “100GHz quantum decoder” 
represents the performance which will be attained if quantum 
decoder working on 100GHz bandwidth is available. This can 
be a reasonable reference for the upper bound of practically 
attainable performances with near future technologies. Two 
schemes are compared under this upper bound. One is 1024-
ary coherent communication scheme based on homodyne 
detection. The other is pulse position modulation (PPM) 
scheme. Both schemes assume a 100GHz pulse generation rate. 
For shorter distances, such as up to Moon, coherent 
communication scheme realizes the performance close to the 
quantum bound of 100GHz bandwidth. On the other hand, for 
longer distances beyond Mars, PPM scheme achieves better 
performance approaching the quantum bound.  

III. PHYSICAL LAYER CRYPTOGRAPH 

In this section we discuss secure communications with the 

probable security. Let us first consider two extreme cases; the 

most secure communications, that is, QKD, and a high 

capacity space optical link where there is nothing to do with 

security. Bennett-Brassard 1984 (BB84) scheme using decoy 

states is known to be the currently most sophisticated and 

matured QKD scheme, which can ensure the unconditional 

security, in principle.  Its performance is depicted in Fig. 2, 
entitled “Decoyed BB84”. Here we assume that the pulse 

generation rate is 1GHz which corresponds to currently 

highest speed of fast QKD systems. The dark count 

probability is assumed to be 10-6 per pulse, that is, 1000 counts 

per sec, which is typical for the current detectors used in QKD 

systems. The final key rate is typically 100kbps at a distance 

of -20 dB loss, roughly corresponding to a 100km distance for 

a low loss fiber. The key rate rapidly falls down at a distance 

of -40 dB loss, which is roughly a link budget for a LEO-to-

ground distance in space optical communication. The curve 

entitled “Tele-amplified BB84” represents a scheme with 
quantum relay to extend a distance. One sees that there is a 

tradeoff between the final key rate and the distance, namely 

extension of distance sacrifices the key rate. Decoyed BB84 

hardly generates the secure key at around -40dB, while tele-

amplified BB84 can make a QKD link over longer distances. 

But it may still be a poor rate. 

Fig. 2. A numerical example of the secrecy capacities for a wiretap channel. 

with various tapping ratio in red by an eavesdropper. Pulse position 
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modulation is assumed in free space laser link. In the left corner of figure, 

typical key rates in quantum key distribution are also shown. 

The solid line on the top shows the transmission rate for an 

on-off keying scheme with direct detection by an on-off 
detector. Coding scheme is based on PPM. The pulse 

generation rate is again 1GHz, and the transmission power is 

assumed to be 1W. This scheme does not care about any 

security, but pursues merely attaining the maximum 

transmission rate within the available signal power. In the 

region where the transmission rate does not vary as a distance, 

the signal power is stronger enough than the noises, and the 

transmission rate is determined merely by the pulse generation 

rate. As the channel loss decreases below -100 dB, the 

transmission rate starts to decrease because the signal-to-noise 

ratio gets smaller.  

Now there is a huge gap between the performances of the 
on-off keying scheme and BB84-QKD. One might naturally 

ask whether there are some intermediate schemes, which can 

provide higher capacity as well as strong enough security. The 

gap will hardly be filled simply by exploiting technological 

improvement of current QKD schemes. So we consider 

physical layer cryptography as an intermediate scheme to fill 

this gap. We make a reasonable compromise for security 

threats to widen the usability, and pursue high capacity, low 

power, and provable security at the same time.  

The provable security is more or less based upon the 

analysis of physical properties of a communications channel. 
Given a channel model, security proof is made information 

theoretically by showing the existence of error correcting 

codes that can effectively establish the statistical independence 

between the legitimate users and the eavesdropper. See Fig. 3. 

Thus provably secure cryptography is also referred to as 

physical layer cryptography, and provable security is also 

called as the information-theoretic security.  

Fig. 3. Schematic of wiretap channel.  

In physical layer cryptography, Eve's channel, i. e. wiretap 

channel is assumed to be worse than that of Bob, such as the 

signal-to-noise ratio of Eve is less than that for Bob. Then 

there exists a code that can transmit the amount of bits  

 

            (5) 

faithfully per sec, making leaked information to Eve arbitrarily 

small. This is the difference between the mutual information 

for Alice-Bob and Alice-Eve. Px is a priori probability of the 

symbol x. This quantity is called the secrecy capacity, that is, 

the maximum rate of reliable transmission with the provable 

security. This is the provable security, whose theoretical basis 

was first laid by Wyner [6]. In the coding scheme for the 

wiretap channel, one should add not only redundancy to 

perform error correction but also randomness for privacy 

amplification to deceive Eve.   
Now the secrecy capacity is estimated for the on-off 

keying scheme in the wiretap channel in space optical 

communication. Parameters are the available power for 

transmission, the channel transmittance, and background noise 

counts. For Bob, we denote the transmittance by y, and 

assume background counts y of 10000 counts per sec. For 

Eve, we denote the transmittance by z, which is less (worse) 

than that of Bob (zy) and assume background counts z of 
1 counts per sec which is much lower (better) than that of Bob. 

We then calculate the secrecy capacity under the constraint of 

transmission power. We vary the wiretapping ratio zy from 
0.01 to 0.999. In Fig. 2, one can see that we can cover wide 

area of performance of the provably secure communications 

with relatively high transmission rates.  

Our next concern is the quantification of tradeoff between 

reliability and security. We want to estimate required 

resources for given levels of reliability for Bob and security 

against Eve. The redundancy and randomness should be 

minimal. So we now have two kinds of rates. One is the 
reliable transmission rate RB for Bob, and the other is a 

randomness rate RE to deceive Eve. Thus there are M of 

messages, and L of random choices (See Fig. 4). There are 

some candidates of security measures. We adopt the Kullback-

Liebler (KL) distance between the output and target 

distributions at Eve, because it can quantify the strongest 

security in an information theoretic way. So we would like to 

make the Bob’s decoding error and the Eve’s KL distance as 

small as desired. To quantify these quantities in finite code 

length, we extended a notion of reliability function which is 

the error exponent, and have introduced a notion of the 

security function [7].  

Fig. 4. Conceptual codeword structure and the rate RB for Bob and the 

randomness rate RE  to deceive Eve, as well as numbers of message and 

randomness symbols. 

 

The reliability function is the exponent of the Bob’s 

decoding error as  
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while the security function is the exponent of the Eve’s KL 

distance as 

 

     (7) 

These two quantities are dual to each other. They specify how 

rapid the decoding error and the KL distance decrease as code 

length n.  

Fig. 5. The reliability functions for several powers.  

In Fig. 5 the reliability functions for several cost 

constraints are plotted. is understood as a given transmission 
power. As seen, larger power allows larger reliability. The 

horizontal axis is a sum of the rates RB and RE, which specify 

the ratios of message and randomness parts in the code, 

respectively. On the other hand, Fig. 6 plots the security 

functions. Larger power implies weaker security. The 

horizontal axis is the rate RE for the resolvability.  

Fig. 6. The security functions for several powers.  

In Fig. 7, we plot the reliability and security functions at 
the same time. The reliable transmission with the provable 

security is possible for the rates in the interval indicated by the 

arrow. Fig. 8 shows an example of the tradeoff engineering to 

increase the security, keeping the reliability of Bob. The 

randomness rate RE is increased, while the rate for Bob RB is 

decreased, keeping the sum of the two the same value. The 

change of the security function quantifies the increase of the 

security level.  

Fig. 7. The reliability and security functions. 

IV. DISCUSSION AND OUTLOOK 

Next important challenge is to design good constructive 

wiretap code which can get close to the secrecy capacity. For 
an ideal detector system with infinite bandwidth (very small 

time resolution), the on-off keying scheme turns to be a 

Poisson channel. For Poisson channels we already know an 

explicit code construction to attain the capacity, which was 

proposed by Wyner. This is one of equal weight codes. It was 

also shown by Laourine and Wagner [8] that the Wyner code 

can also attain the secrecy capacity of Poisson channel. So our 

next work will be to implement physical layer cryptography in 

a free space Poisson wiretap channel using Wyner code.  

Fig. 8. Example of the tradeoff engineering to increase the security, keeping 

the reliability of Bob.  
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