Rapid turn around UT1 estimation with e-VLBI

Yasuhiro Koyama, Tetsuro Kondo, Hiroshi Takeuchi, Masaki Hirabaru (NICT) Kazuhiro Takashima (Geographical Survey Institute) David Lapsley, Kevin Dudevoir, Alan Whitney (MIT Haystack Observatory)

IVS Products Status and Goals

(some examples from WG2 Report)

Products

polar motion
 x_P, y_P

accuracy

resolution

accuracy

resolution

accuracy

accuracy

accuracy

latency

latency resolution

latency

freq. of sessions

freq. of sessions

freq. of solution

latency

UT1-UTC

- celest. pole
 Δε, Δψ
- TRF (x,y,z)
- CRF(a, d)

Status

 $x_{p} \sim 100 \ \mu as, y_{p} \sim 200 \ \mu as$ 1 - 4 weeks - 4 months 1 dav ~3 d/week 5 - 20 μs 1 week 1 day 100 - 400 μas 1 - 4 weeks... 4 months 1 day ~3 d/week 5 - 20 mm 0.25 - 3 mas 1 year 3 - 6 months

Goals(2002-2005)

 x_{p}, y_{p} : 50 - 25 µas 4 - 3 days - 1day 1 day - 1h - 10min ~7 d/week 3.-2 μs 4 - 3 days – 1 day 1 day - 10 min 50 - 25 μas 4 – 3 days - 1 day 1 day ~7 d/week 5 - 2 mm 0.25 mas (improved distribution) 1 year 3 - 1 month(s)

Number of Days Required to Deliver Products Situations in 2002 (January to August)

R1 & R4 Time Delay Over Time

September 11, 2002 - CCT

Key Stone Project VLBI Network (1994-2001)

VLBI Systems for e-VLBI

1990~
Rotary Head Recorder
Cassette Tapes
Hardware Correlator
e-VLBI with ATM

2000~ PC based system Hard Disks Software Correlator e-VLBI with IP

K5 Data Acquisition Terminal

K5 System

K3 System

1983~ Longitudinal Recorder Open Reel Tapes Hardware Correlator

1990~

KASHIMA-WESTFORD Experiments

Kashima 34m

Westford 18m

- Baseline Length = 9502km
- The first test : October 8, 2002
- Feasibility check to estimate UT1 : March 25, 2003
- UT1 challenge #1 (tsev6) : June 27, 2003
- UT1 challenge #2 (tsev8) : June 29, 2004

Consistency of the UT1-UTC estimation

UT1-UTC estimation compared with NEOS Intensive VLBI sessions

* Data analysis done by Goddard Space Flight Center, NASA

Kashima-Westford Experiment : June 27, 2003

Kashima 34m

Westford 18m

- Time Sequence (JST)
 - □ 22:00 Observations Started
 - 00:00 Observations Finished
 - □ ~04:20 File extraction and transmission
 - From Kashima to Westford : 107Mbps 41.54GByte in 51m 35s
 - From Westford to Kashima : 44.6Mbps 41.54GByte in 2hr 04m 02s
 - □ ~08:10 File Conversion (Mark5 to K5)
 - □ ~20:30 Software Correlation
 - □ ~21:20 Bandwidth Synthesis Processing, Database Generation, Data Analysis

Kashima-Westford Experiment : June 29, 2004

Kashima 34m

Time Sequence (JST) New World Record!! 4:00 **Observing Started** 4.5 hours 5:00 **Observing Finished** 5:13 Data Transfer Started (from Haystack to Kashima) 6:28 Data Transfer Finished (~30Mbps) Correlation Processing Completed (used 21 CPUs) 9:16 Data Analysis Completed : UT1-UTC sigma=22 microsec. 9:30

CPU array for Software Correlation

Correlation Master Table/Database

Tsukuba-Wettzell Intensive Experiments : August 29, 2004~

Tsukuba 32m

Wettzell 20m

- Second Intensive Session Series on Sundays
- Saturday sessions are currently done by using K4 system
- Sunday sessions are intended to be e-VLBI
 - □ One e-VLBI session every month, initially (the other sessions using K4)
 - □ Will migrate into weekly e-VLBI
 - □ Plan to do e-VLBI in both Saturday and Sunday sessions

Current Bottle Necks and Ideas for Improvements

NFS (Network File System)

- □ Convenient : Software correlation program can assume as if all files are local files
- □ But, slow : especially when multiple access occurs
- ⇒ server-client programs designed for the software correlation program

File Format Conversion

- □ K5 to Mark5, Mark5 to K5, etc.
- ⇒ direct K5-Mark5 correlation

Disk Buffering

- Prevents real-time VLBI
- ⇒ data transfer during observations

To Do...

Short Term

- Automate set-ups for routine/regular sessions
- Use of CPU array recently introduced at Tsukuba (GSI)

Longer Term

- Develop K5 read/write module working with VSI-E libraries
- Software correlation programs to receive VSI-E streams

Conclusions

- Rapid turn-around estimation of UT1-UTC within a few hours was successfully demonstrated.
- Regular/Routine Intensive e-VLBI sessions for UT1 will become operational and smooth as experiences accumulate.
- Next targets will be
 - □ to demonstrate real-time UT1 estimation
 - □ larger scale IVS sessions with e-VLBI

Acknowledgements

- JGNII, Internet2, Super-SINET
- Galaxy Network Team (NICT, GSI, NTT, NAO, JAXA, Gifu Univ., Yamaguchi Univ.)
- Haystack Observatory, MIT
- Fundamentalstation Wettzell, BKG
- Goddard Space Flight Center, NASA

