VGOS with Continuous Frequency Coverage: The GALA-V Example

Mamoru Sekido, K.Takefuji, H.Ujihara, T.Kondo, M.Tsutsumi, Y.Miyauchi, E.Kawai, S.Hasegawa, R.Ichikawa, Y.Koyama, Y.Hanado, J.Komuro, K.Terada, K.Namba, R.Takahashi, K.Okamoto, T.Aoki, T.Ikeda (NICT) K.Watabe, T.Suzuyama (AIST/NMIJ)

R.Kawabata, M.Ishimoto, T. Wakasugi (GSI)

Our experiences

- **1. Broadband VLBI is tolerant to RFI**
- 2. Subpico-second delay precision is enabled even with small (1.6-2.4m) antenna pair.

Please imagine what happens with VGOS telescopes! It is encouraging future of VGOS.

3. RF Direct Sampling enables stable Broadband group delay measurement (Pcal free).

Contents of this Presentation

- Components of the GALA-V System
 - Broadband Feed and Antenna performance
 - RF-Direct Sampling
 - Broadband Bandwidth Synthesis and Phase Calibration with radio source
 - <u>RFI Survey and Current condition</u>
- Broadband VLBI Experiments
 - Delay measurement precision
 - Geodetic Solution and our Clock comparison

GALA-V Project Overview

Frequency comparison by using Transportable Broadband telescopes

- VLBI Sensitivity :VLBI Sensitivity = $\propto D_1 D_2 \sqrt{BT}$ B: 32MHz → 1024MHz (32 times)
- ■Radio Frequency : 3-14 GHz
- ■Data Acquisition : 4 band (1024 MHz width)
 - Fc=4.0GHz, 5.6GHz, 10.4GHz, 13.6GHz
 - Effective Bandwidth : 3.8GHz (10 times more than Conventional)

Broadband VLBI Stations in Japan

Initial State of Broadband Gala-V Project

Kashima 34m

MARBLE1 1.6m @NMIJ(Tsukuba)

MARBLE12 1.5m @Konganei

Original broadband Feed NINJA, IGUANA-H

Rindgren QRHA

Broadband Gala-V Project of Today's Talk

Kashima 34m

MARBLE1 1.6m @NMIJ(Tsukuba)

MARBLE12 2.4m @Konganei

Rindgren **QRHA**

Reason why NICT Developed own Broadband Feeds

Data Acquisition System

RF-Direct Sampling and DBBC

IF Input Port	2	
Input Freq. Range	0.1-16.4 GHz	4
Input port	2 -4 analog input	
Sampling Rate	16384 MHz sampling 3bit	
Data mode	DBBC to select 1GHz band by 1MHz step Nch/unit= 4 or 8 2048 Msps/ch Qbit=1, or 2 bit	
Output Port	10GBASE-SR, 4port	
Data rate	8192 Mbps/port	-

K6/GALAS(Octad-G)

BW 1024MHz x 4-8ch

Delay [nsec]

Advantages of Direct RF Sampling Technique possible Pcal-free system

Advantages of Direct sampling

- 1. Simple and less system components.
- 2. Stable inter-band phase relation

=> (Pcal,Dcal free)

Procedure of Broadband Phase Calibration with radio source

Procedure of Broadband Phase Calibration with radio source

Full Bandwidth Synthesis #1-#(6-14GHz)

Least Square Estimation of δTEC *and* $\delta \tau$ $\emptyset[deg.] = \alpha \frac{\delta TEC}{f} + 360 \times \delta \tau \times f + c$

RFI Survey and Broadband DAS

Broadband RFI Survey Sites NICT-HQ(Koganei) NMIJ(Tsukuba) NICT (Kashima)

RF of 2nd Building. Communication Antenna for TWSFTT(14GHz), Other emission from experimental system of NICT Labs.

NICT-HQ(Koganei 11m)

Roof Floor of Koganei 11m VLBI station Building. Relatively quiet. Surrounded by trees.

Communication Antenna for TWSFTT(not used).

139

Roof Floor of Kashima 34m VLBI station Building.

RFI Survey at Tokyo, Kashima, Tsukuba

Our experience " we could make very precise delay measurement under RFI environment" should encourage VGOS future.

Advantage of RF-Direct Sampling - Robustness to RFI -Power = $k_B T B$ **Case Study: Broadband (~ 10GHz) Case:** In the case RFI of +20dB up from noise T=200K=-176dBm/Hz=-101dBm/32MHz=-76dBm/10GHzfloor with 1 MHz width. A/D Conv. **Total:** Total Power of RFI Total Power of Signal **36dB 40dB** Feed +0dBm@10GHz -20dBm < 0dBm Gain: +76dB Power density: -36dBm/MHz Narrow Band (~ 32MHz) Case: Total Power of RFI Total Power of Signal A/D Conv. +5dBm **OdBm** > **30dB 30dB 40dB** Total: +0dBm 32MHz Feed Recall Power density: -16dBm/MHz 4C dBm 12.81 Gain:+100dB -40 dbm 20dB -SC dbm File anager

Date: 6.879.2016 14:37:27

1bit sampling Simulation [noise(3)]

Current State at Kashima 34m Broadband Signal

RBW=3MHz Whole BW~12GHz

N=12GHz/3MHz =36dB

Total Powe~-45+36 =-9dBm < -5dBm (RFI)

Real Input to A/D at Kashima 34m Broadband Signal(Lower Band<8.2GHz)

Real Input to A/D at Kashima 34m Broadband Signal(Lower Band>8.2GHz)

Broadband VLBI Experiments

Broadband VLBI Stations in Japan

Delay Behavior Broadband Delay (3.2-12.6GHz) Kashima34 – Ishioka 13m

```
Exp. on 14 Aug.2015,
Freq. array=(Lower Edge=3.2, 4.8, 8.8, 11.6GHz)
```


Alan Standard Deviation

'Small – Small' Baseline

• Small diameter antenna is supposed to be tools

for Atomic Clock comparison.

• Closure delay relation for 'small-small' baseline.

$$\tau_{21}(t_1) = \tau_{23}(t_1) - \tau_{21}(t_1) - \tau_{21}(t_1)\tau_{23}$$

• Advantage:

- Quick Slew and small distortion
- Large Diameter's effects are canceled out.
- Lower Cost
- Disadvantage: Lower Sensitivity

Conventional S/X Kas11 -Ko11 v.s. Broadband Mbl1(1.6m)-Mbl2(2.4m)

Exp. on 14 Aug.2015, Freq. array=(Center Edge=3.8, 5.9, 8.7, 10.6 GHz)

"gtest-4s.dat" u 1:(\$2)*a —— Delay (4th Poly-fit removed) Data

Delay [psec]

-40

Position Solution of MBL1-MBL2

Summary

- 1. We developed Broadband VLBI Observation/Processing System
- 2. Broadband Observation is relatively robust to RFI.
- 3. Broadband (3-12GHz) observation gives higher precision delay measurement even with 1.6 m 2.4 m baseline.

Thank you for Attention

Acknowledgements

- Development of Broadband Feed was supported by a grant (2013-2014) of Joint Development Research from National Astronomical Observatory of Japan(NAOJ).
- Broadband experiments with Ishioka Station was kindly supported by GSI.
- Highs speed research network environment is supported by JGN.

Current (April '07)Broadband Gala-V Project

Kashima 34m

MARBLE1 2.4m @NMIJ(Tsukuba)

MARBLE12 2.4m @Konganei

NINJA Feed For Marble