３ デバイス
3 Devices

３-1 発振器
3-1 Oscillator

３-1-1 GaAs 系量子カスケードレーザ
3-1-1 GaAs-based Quantum Cascade Lasers

関根徳彦 異迫 京
SEKINE Norihiko and HOSAKO Iwao

要旨
量子カスケードレーザは従来と異なる構造・特性を持ち、これにより従来の半導体レーザでは成し得なかった波長帯におけるレーザ発振が可能となった。特にテラヘルツ帯量子カスケードレーザは、気体分子分光や電波・赤外天文分野にとどまらず、環境情報、医療診断など、人々の安全・安心にかかわるようなイメージング・センシング応用が期待されるテラヘルツ帯の光源を提供するために、非常に注目されている。そこで本稿では、GaAs 系半導体材料を用いたテラヘルツ帯量子カスケードレーザについて述べる。今回作製したレーザにおいて、低温・パルス駆動ながら 30 mW の出力を得ることができ、また 120 K の最高動作温度を達成できた。

Quantum cascade lasers (QCLs) have different structures and characteristics from those of conventional semiconductor lasers commonly used in the optical communication systems. Therefore, QCLs make it possible for us to access wavelengths which couldn’t be available in conventional lasers. In particular, terahertz QCLs (THz-QCLs) have been paid much attention due to their potential applications in various fields, such as biosensing, imaging, and security. In this paper, we report GaAs-based THz-QCLs. The peak output power of about 30 mW was obtained in a pulsed operation at low temperature. The maximum operating temperature above 120 K was achieved.

[キーワード]
テラヘルツ 法子カスケードレーザー サブバンド間遷移
Terahertz, Quantum cascade laser, Intersubband transition

１ まえがき
—量子カスケードレーザーとは—
量子カスケードレーザ（Quantum Cascade Laser, QCL）は半導体レーザの一種であるが、従来の光通信やコンパクトディスクなどに利用されてきた半導体レーザと、構造及び発光機構、特性が大きく異なるレーザである。図 1(a) に従来の半導体レーザのエネルギー・バンド構造を示す。ここでは、例として活性層に半導体量子井戸を用いた量子井戸レーザを示しており、単一もしくは数個の量子井戸活性層を、n 型にドープした半導体と p 型に
ドープした半導体で挟み込む構造となっている。一方、QCL の代表的なエネルギーパンド構造を図 1 (b) に示す。これは、エネルギー障壁高さの異なる半導体材料をナノメートルの厚みで積層した構造になっている。一見すると、どちらも数種類の半導体材料を積層したものなので、似ているように見えるが、その動作原理・性能は全く異なる。これを従来の半導体レーザ（単に、単に積層、単に積層と呼ぶ）と比較しながら見てみる。

半導体レーザは、発光を得るために、半導体の伝導帯にある電子と、価電子帯に存在する正孔の発光再結合、いわゆるバンド間遷移を利用している（図 1 (a)）。そのため、その発光波長は、活性層に使っている半導体材料のバンドギャップエネルギー E_g（量子井戸レーザの場合は、これに量子化エネルギーを加えたもの）に依存する。一方、QCL は、図 1 (b) にあるように、伝導帯にある電子のみ（もっとも価電子帯の正孔のみ）を利用し、量子井戸を作製した際に現れる量子化準位間の遷移（サブバンド間遷移）により発光を得る。このため、QCL を観察する際はしばしば、半導体レーザと区別を明確にするために、半導体レーザをバンド間遷移レーザもしくはパラレルレーザと呼び、QCL をサブバンド間遷移レーザもしくはユニバーサルレーザと呼ぶ。

このような違いのため、QCL は半導体レーザと比べて次のような特徴を有する。
1. 発光波長の自由設計可能
QCL のサブバンド間遷移で発光を得るために、その発光波長はサブバンド間エネルギーで決まる。サブバンド間エネルギーの大きさは量子井戸幅によって任意に変えることができるため、このことは発光波長に関して構成材料による制限がないことを意味する。
2. 大きな量子効率が実現できる
QCL の活性層は、図 2 (a) のようにレーザ上位準位と下位準位の間のサブバンド間遷移により発光を得る利得領域と、レーザ下位準位に緩和したキャリアを次の領域に引き渡すキャリア引抜き／注入領域を 1 ユニットとして、これを多段に接続した構成をとる。そのため、QCL では一度発光遷移を起こしたキャリアは、次のユニットに移動後に再度発光に関与するという、キャリアサイクルティング効果が現れ、接続したユニットの段数に比例した大きな量子効率が得られる。ちなみに、キャリアがポテンシャルエネルギーを落ちていく様子を模式的に描いたものを図 2 (b) に示すが、発光遷移の際にキャリアがポテンシャルエネルギーの滝（cascade：カスケード）を落ちていくように見えることから、量子カスケードレーザと名づけられた。
3. 高い光学利得・狭い光学利得幅
QCL と半導体レーザは、それぞれサブバンド間遷移・バンド間遷移で発光を得ると述べたが、これに起因するもう一つ重要な違いがある。図 1 は、量子井戸の面内に垂直な方向のエネルギーパンド構造であるが、レーザの上位・下位準位のみを取もって面内に平行な方向のエネルギーレー分散関係を表すと図 3 のようになる。比較のために半導体レーザの方から先に述べると、図 3 (b) に示すのが
電流中の電子が伝導帯と正孔の間で伝導し、このときのエネルギーは一定でなく、伝導帯のエネルギーは異なる。発光は垂直伝導であるため、

$k = 0$ における遷移エネルギー $E_k = 0$ と $k = 0$ における $E_k$ は異なる。このように遷移エネルギーが $k$ に依存するために、結合状態密度もエネルギーに幅を持った形となり、利得スペクトルはステップ関数となる。一方、QCL の場合は図 3(a) のように、二つの準位の分散曲線は共有

伝導帯をもしくは価電子帯となるため同じ曲率を持つ。すると、分散曲線の非対称性を無視すれば、

$E_k$ は $k$ によらず一定となるため ($E_k = E$)、結合状態密度は遷移エネルギー付近の寄与値を持ち、利得スペクトルはテルク関数的、すなわち原子的なものになる。そのため、注入されたキャリアは発光過程において、すべてエネルギー $E$ の遷移に利用されるため、結果として高い光学利得が得られる。また、利得スペクトルがテルク関数であるという特徴のために、狭い線幅も期待できる。

QCL の原理をもとえる構造は、Kazarinov と Suris により 1971 年に提案され、サブバンド間遷移

図2 (a) QCL 活性層の構成例。利得領域と引抜き/注入口で 1 ユニット (QC 構造) を形成する。
(b) QC 構造を多段接続した活性層中のキャリアダイナミクスを模式的に描いたもの。

図3 利得領域における量子井戸面内に平行な方向のエネルギー分散曲線
(a) QCL は $k//z$ によるエネルギーはほぼ一定。（b）半導体レーザでは $k//z$ が大きくなると遷移エネルギーも増大する。
移による光增幅の可能性を示した[1]。この提案により、サブバンド間移動の基礎・応用の両側面について理論的・実験的研究が盛んになされた[2]・[9]。これらの研究の中で、電流の注入法や反転分布形成について議論がなされ、ついに 1994 年 Faist らによって、中赤外 (mid-infrared: MIR) 領域において初めてサブバンド間レーザーである QCL の発振が実現された[10]。このレーザ発振以降、レーザ特性向上のための様々な工夫がなされ、現在では室温連続発振、更にワットオーダーの出力が得られるようになっている。一方、テラヘルツ (terahertz: THz) 帯では、発光エネルギーが MIR 領域に比べ非常に小さかったため、THz 帯特有的種々の困難があったが、2002年にKohler らによってTHz 帯の QCL (THz-QCL) が実現された[11]。

以下で、NICT における THz-QCL の取組を述べ、現在得られている特性について紹介する。

2 テラヘルツ帯量子カスクードレーザー

2.1 動作原理

THz-QCL は、注電流を供給された代表的な構造はいくつかあるが、そのうちの一例を図 4 に示す。活性層を構成するユニットが利得領域と引抜き注入領域からなることは既に述べたが、ここではもう少し詳細について述べる。利得領域では、発光を得るためのレーザ上位準位 (3) と下位準位 (2) があり、このエネルギーデ差 E23 で発振周波数が決まる。準位 3 にキャリア (この場合は電子) を注入しなければならないが、これは前段の引抜き注入領域の最低エネルギーサイクル (g) にいる電子が注入障壁層 (図中に g と示した半導体層) と呼ばれる厚みを調整した薄膜をトネル化することにより注入される。発振を得るためには、準位 3 と 2 の間で反転分布が形成されていなければならないが、半導体レーザーの時と同様に、キャリア数とフォトン数に関するレート方程式を書くと以下のようになる。

\[
\frac{dn_g}{dt} = \frac{J}{e} - \frac{n_g}{\tau_g} - S_g(n_l - n_g)
\]  (1)

\[
\frac{dn_2}{dt} = \frac{n_2}{\tau_{22}} + S_g(n_l - n_g) - \frac{n_2}{\tau_{22}} \exp \left( \frac{\Delta}{kT} \right)
\]  (2)

図 4 THz-QCL のエネルギー図の一例

1 は注入障壁層、g は引抜き注入領域の磁極準位、3, 2 はそれぞれレーザ上位、下位準位、1 は LO フォノンによるキャリア引抜き準位である。

\[
\frac{dS}{dt} = \left( \frac{c}{N} \right) \left[ S_g(n_l - n_g) + \beta \frac{n_l}{\tau_{l}} \right]
\]  (3)

ここで、n_l は準位 l のキャリア密度、\tau_l は準位 l のキャリア寿命、J は流電流密度、g は素電荷、S はフォトン密度、\beta は準位 1 から j へのキャリアの遷移時間、\Delta は準位 2 と 1 のエネルギー間隔、kT は熱エネルギー、\tau は光度、N と \alpha はそれぞれ QCL 助波の等価粘り数と吸収係数である。\tau は自然放出波のレーザモードへの結合率、\tau_{l} は自然放出寿命である。簡単のために、自然放出の項が十分小さいとして無視して上記 3 式を定常状態について解くと、レーザ上位準位と下位準位のキャリア数の差 \Delta n が以下のように求められる。

\[
\Delta n = n_3 - n_2 = \frac{J}{e} \tau_2 \left( 1 - \frac{\tau_{22}}{\tau_{32}} \right) n_2^\text{trans}
\]  (4)

ここで、n_2^\text{trans} = n_2 \exp (-\Delta/kT) としており、準位 g に溜まっているキャリアが熱により準位 2 に分布する密度を表す。反転分布ができるとは、\Delta n > 0 であるが、\Delta >> kT を仮定すると n_2^\text{trans} \ll n_2 となり、結局のところ反転分布条件は、

\[
\tau_{32} > \tau_2
\]  (5)

となることが分かる。

上記反転分布条件を満たすために、QCL では、レーザ下位準 2 の下に更にもう一つ準位 (1) を配置している。そして、これら二つの準位間のエ
エネルギー差 $\Delta E_{21}$ を線光学 (longitudinal optical, LO) フォノンエネルギー ($E_{10}$) より若干大きく設定することにより、LO フォノン散乱を利用して短い $\tau_2$ を実現している。LO フォノン散乱は、その $E-E_2$ 分散曲線に $k$ 依存性がありなく、$E = E_{10}$ となる。そのため、エネルギーグ間隔が $E_{10}$ を超えると、LO フォノン散乱が支配的になる。一方、レーザ出力位Phaseは $E_{10}$ よりも小さいために散乱機械としては効かなくなるため、散乱時間を一般に長くなり式 (5) が満たされる。

2.2 テラヘルツ帯レーザ発振の困難と解決のための工夫

MIR 領域では、高感度化が進んでいる QCL も、発光波数数が THz 領域になると、MIR 領域には見出なかった以下の特性が顕在化し、レーザ発振が困難になる。

(1) 大きな導波路損

レーザ導波路において、光の損失に着目するのには、吸収損失・散乱損失・ミラー損失などがあるが、このうち吸収損失は導波路内に存在するキャリアによる吸収（自由キャリア吸収）から起きる。自由キャリア吸収の大きさは、誘電率から求められるが、ドーピングした半導体においてドーパントモデルを仮定すると、その誘電率 $\varepsilon$ は、以下のようになる。

$$\varepsilon = (n + ik)^2 = 1 - \frac{\omega_p^2}{\varepsilon_0 \varepsilon_2 + i\varepsilon_3}$$  

ここで $\omega_p$ はプラズマ周波数、$\gamma$ はダップニングファクタ、$n$ と $k$ はそれぞれ複素屈折率の実部と虚部である。これより自由キャリア吸収による吸収率 $\alpha$ は、

$$\alpha = \frac{4\pi k}{\lambda} \propto \lambda^{-2}$$  

と表され、その大きさは波長 $\lambda$ に対し 2 乗に比例する。THz 光（$\lambda \sim$ 数百 $\mu m$）は MIR 光に対して波長が 10 倍程度長いため、この波長依存性により、同じ導波路構造を用いた場合、MIR 領域では問題なかった吸収損失が THz 領域では顕著に現れてくる。このため、活性層のドーピング濃度制御が厳しくなり、また導波路構造自体も工夫が必要になる。

(2) 難いキャリア注入効率

THz 光はエネルギーで見た場合、数 $\sim$ 数十 meV の範囲であるため、上下のレーザ基準位移もそれによって狭くなる。すなわち、量子化位準のエネルギー広がりが発光エネルギーに近くなるために、キャリア注入口領域からレーザ出力位Phaseに選択的にキャリアを注入することが困難になる（レーザ出力位Phaseその他の位準へのトンネリングが増加する）。そのため、制御を得るために必要な反転分布を形成することが困難になり、それを制御する注入制御層などの設計が重要になる。

(3) 配位的キャリア緩和機構の変化

MIR-QCL では、キャリアの非発光緩和機構としては、LO フォノン散乱が支配的だったが、これは発光エネルギーが $E_{10}$ (GaAs で 36 meV) よりも大きいためであり、これをうまく利用することにより反転分布を形成していた。一方、THz-QCL では、発光エネルギーが $E_{10}$ よりも小さくなるため、LO フォノン散乱が効かなくなる。このような領域では、キャリア注入による電子・電子散乱、異種材料の界面の不完全性による界面ラフェスス乱などが無視できなくなり、これも QC 構造の設計を困難にする。

上記の困難の中で数つかのグループはそれぞれ独特の工夫を凝らして THz-QCL の発振に成功しており、図 5 に代表的な活性層構造の模式図を示す。図 5(a) は、初めて THz-QCL に成功した構造で、chipred superlattice 型と呼ばれる。これは、動電界を印加した際に、超格子のミカンとフラットバンクになるように量子井戸型、パラレル寿命を徐々に変えている構造で、発光遷移はミカンバンク間で起こる。上位ミカンバンクの底から下位ミカンバンクの頂上に遷移したキャリアは高速なミカンバンク内緩和により下位ミカンバンクの底の底に移動し、次の上位ミカンバンクに注られる。図 5(b) は、bound-to-continuum 型と呼ばれ、先の構造と比較すると、下位準位のキャリア引き抜きにはミカンバンク内緩和を利用している点では同じだが、レーザ出力位Phaseがミカンバンクではなく独立位準である点が異なる。上位準位の孤立化により、前段からのキャリアの注入効率が高くなるようにしている。3 番目の図 5(c) は、共鳴 LO フォノン引き抜き型と呼ばれ
図5 代表的なTHz-QCLのエネルギーバンド構造についてその機能を模式化したもの
(a) chirped superlattice型、(b) bound-to-continuum型、(c) 共鳴LOフォノン引き抜き型。

2.1 の説明に用いた構造である。先の二つではキャリア引き抜きにミニバンド内緩和を用いたが、これはLOフォノン散乱を利用している。LOフォノン散乱自体は先に述べたおり高速の緩和現象なので下位準位のキャリア寿命低減には良いが、THz-QCLの場合、レーザ上位準位とキャリア引き抜き準位の間隔もやはりELOに近いため、上位準位のキャリア寿命も同様に短くなってしまい、反転分布ができてしまう。本構造では、これを避けるため、レーザ下位準位に遷移したキャリアと共鳴トンネルにより空間的に引き抜き／注入領域に移動し、そこで改めてLOフォノン散乱により緩和させる構成をとっている。これによりレーザ上位準位と引き抜き準位の波動関数の重なりを低減できるので、LOフォノン散乱確率が小さくなり、反転分布が形成される。

一方、導波路構造にもTHz光の波長が長いことを利用した導波路が提案されており、図6に主に利用されている二つの導波路構造を示す[14]。レーザ素子で用いられる電極金属及びそのコンタクト層として用いられる高導通にドープした半導体では、THz光に対しても式(6)の第2項がωω1＞＞のため1より大きくなり、誘電率の実部が負になる。このことは屈折率が虚数となることを意味するので、THz光が上記の材料に入ると大きな減衰を受けるから、同時に表面に閉じ込めモード（表面プラズモン）が形成される。THz-QCLの導波路では、このプラズモンモードを利用したものがになっている。図6(a)は、semi-insulating surface plasmon (SISP)導波路と呼ばれることで、上下面電極金属、下下面半導体薄膜で光を活性層に閉じ込んでいる。この場合、半導体ドープ薄膜で形成されるプラズモンモードは基板側にも広がるので、基板での吸収を避けるために、半導体基板を用いている。一方、図6(b)はmetal-metal (MM)導波路と呼ばれ、上下面の両面ともに電極金属で挟む構成となる。この場合、両端の金属層には光が伝播できず、その間の活性層のみに光が閉じ込められるので、光閉じ込み率はほぼ1となり、高い光閉じ込み率が可能となる。

2.3 テラヘルツ帯量子カスケードレーザ (THz-QCL)

以上で述べた特徴を踏まえて、我々のグループで作製したTHz-QCLを紹介する。レーザ構造は、半導体性GaAs基板上に分子線エピタキシー (molecular beam epitaxy : MBE) 法によりGaAs/AlAs/GaAsの共鳴LOフォノン引き抜き型
QC 構造（図 7(a)）を 480 周期成長し、その上下を Si クージ GaAs コンタクト層で挟んだ構造をなっている。図 7(b) は成長した QCL 構造の断面 SEM 像だが、周期構造が出来ていることが分か

図 6 THz-QCL に用いられる導波路構造とそれによって閉じ込められた光電界のモードプロファイル
(a) SISP (semi-insulating surface plasmon) 導波路構造、(b) metal-metal (MM) 導波路構造。

図 7 THz-QCL のレーザ構造
(a) 作製した THz-QCL の活性層構造。各層の厚さは模様内からより 5.4/7.8/2.4/6.5/3.8/2.4/3.0/9.5（単位は nm。太字は Al0.10 Ga0.90 As でその他の GaAs。また下段は Si をドープした n 型にしている。）。 (b) THz-QCL の断面 SEM 像。 (c) THz-QCL の X 線回折スペクトル。 (d) SISP 導波路に閉じ込められた THz 光のモードプロファイル。閉じ込め率 ξ = 21%、導波路厚 aw = 10 cm⁻¹。
ある。また、より詳細な評価のために X 線回折評価を行い、設計値に対して 2％以内の誤差で出来ていることが確認された（図 7(c)）。この試料に対し、通常のウェットプロセスにより、メサ幅 200μm、共振器長 3mm のフロピ・ペロー型導波路を作製した。レーザ側面は、出射端面をへき開面、後端面には高反射膜を施している。導波路は、図 7(d)に示すように SISP 導波路構造とした。

図 8 にレーザ特性を評価した結果を示す。図 8(a)は、パルス駆動下における電流・電圧 (I-V)、電流-光出力 (I-L) 特性であり、電流パルス幅、幅 200ns、繰り返し周波数 400Hz としている。また、光出力はホロメータ検出器を用いており、測定温度は 39K とした。これを見ると、1kA/cm² を下回る限界電流密度でレーザ発振しており、出力は 30mW にせまるピークパワーより得られている（IL 特性中でリングが見られる）が、これは測定光路中（レーザー検出器間）に存在する大気の吸収によることである。また、光出力観察を約 28V と半導体レーザー（−1V）と比較すると非常に大きいのが、これは QC の特性であり、QC 構造のユニットを何段もつなげることにより、全体の電圧降下が接続段数分大きくなっていているためである。

挿入図は、バイアス電流を 5.1A としたときの発振スペクトルであり、3.1THz で発振していることが分かる。出力の高さは、IV 特性中に負性抵抗が見えることがからも分かるように、QC 構造中の半導体のカップリングが解け、キャリアの注入が設計どおりにいかなかったためである。

図 8(b)に THz-QCL の温度特性を示す。この試料では、最高動作温度は 135K であり、特性温度 (T₀) は発振停止直前で 113K となり、100K を超える値が得られている。

以上は、SISP 導波路を用いた、MM 導波路も魅力的な導波路構造である。というのも、光閉じ込め率が 1 に近いため、Γ/α で定義される Figure of merit が SISP 導波路のときよりも大きくなり、低限界が期待できる。また、このに伴い抵抗温度 - 共振器長が可能となるため、消費電力の低減にも有利である。ただし MM 導波路の場合は、THz 領域の周波数に対して、共振器端面での外部とのインピーダンス不整合が大きいため、レーザ光の外部取り出し率が下がってしまう。そのため、THz-QCL の高出力力化については少々不利になるが、これの解決するための様々な工夫が提案されている [15]～[18]。そこで、我々のグループでも MM 導波路型 THz-QCL を製作した。

MM 導波路作製については、先に同様に MBE 法により結晶成長を行った THz-QCL エピウェハと n-GaAs 基板双方の表面に Au を蒸着し、Au どうして thermocompression による貼り合わせを行った。THz-QCL における貼り合わせでは In-Au
図9 (a) 金属導波路構造の断面SEM写真。挿入図は金属貼り合わせ部を拡大したもの。(b) MM導波路を有するTHz-QCLのLIV特性。

bondingが広く利用されているが[19]、取扱いの簡便さから我々はAu-Au bondingを採用した。貼り合わせ後、エビ側の基板を除去し、ウェットプロセスで作製したメサ構造の断面SEM像を図9(a)に示す。挿入図の拡大画像からも分かるように、voidの無い良好な貼り合わせ界面が得られていることが分かる。本貼り合わせ技術を用いて、メサ幅~100μm、共振器長~2mmのレーザ構造を作製し、光出力/電流/電圧特性を測定したところ、レーザ振動を得ることができ、$T=15K$で約0.3kA/cm²の障電流密度であった（図9(b)）。消費電力を見ても、先のSISP構造のものと比較して障電を1/20程度に低減させることに成功した。

3 まとめ

以上、ここでは半導体のコンパクトな光源である量子カスケードレーザ（QCL）について述べた。

THz-QCLは世界的に見てもまだまだ開発途上にあり、これからの発展が期待されるデバイスである。THz-QCLは応用を考えると、ベルチェ素子などによる電子冷却で誘発発光が可実用できる温度範囲で、数十mWの出力は欲しいところであり、シンプルなQC構造で高温・高出力が実現できるのか、それともQCLとは別の構造で実現されるのか、今後の展開に期待される。

謝辞

本研究を進めにあたり、プロセスその他に関して、小金井本部フォトニックデバイスラボを利用させていただきました。板谷上席研究員及びラボスタッフの方々に感謝いたします。また、試料評価その他についてお世話になりました東京大学産学化技術研究所の平川教授に感謝いたします。

参考文献