Our perceptual experiences are created by our brains and do not necessarily correspond to the physical properties of the world. To clarify the mechanisms by which the human brain generates perceptual experiences, Hayashi Laboratory in the Center for Information and Neural Networks (CiNet) studies human brains using psychophysics and functional brain imaging techniques. Furthermore, we are trying to clarify the causal relationship between the brain and perception by investigating how the perceptual experience changes when magnetic or electric current stimulation is applied to the brain. Our goal is to apply the findings from these studies to develop technologies that allow us to control our subjective senses at will and to create new perceptual experiences that we have never experienced before.

NEWS

UPCOMING
EVENTS
  • Mar 26th, 2023
    Masaki TERANISHI joined our team as an NICT Internship student. Welcome!
  • Mar 23rd, 2023
    Sugimoto and Hosoya received their masters degree from Osaka University.
  • Mar 20th, 2023
    We launched our new website!
  • Mar 10th, 2023
    Sugimoto’s research proposal was accepted for The Cross-Boundary Innovation (CBI) Program of the Osaka University.
  • Mar 7th, 2023
    Kimura presented a posters at The 8th CiNet Conference.

APPROACH

Uncovering
Neural Correlates

Through psychophysical and neuroimaging experiments, we clarify the neural basis of perception and cognition. Recently, we have been studying the neural mechanisms of temporal and numerical processing, with particular focus on their neural representations and its relationship with our percepts. In the future, I would like to deepen these researches, and also to study how the way information is represented constrains human thoughts and language.

Revealing
Causal Relationships

A weakness of neuroimaging techniques is that while it can reveal the correlation between perception / cognition and brain activity, it cannot reveal the causal relationship between them. Therefore, we use techniques such as transcranial magnetic stimulation (TMS, tSMS) and transcranial electrical stimulation (tDCS, tACS) techniques, which can stimulate the brain non-invasively, to temporarily modulate neural activity and clarify the causal relationship between brain activity and perception / cognition. Currently, we are mainly investigating how the perception of time and number is modulated by brain stimulation.

Augmenting
Human Abilities

Based on the knowledge obtained from psychophysical experiments, neuroimaging, and brain stimulation experiments, we will develop technologies that can improve human perception and cognitive abilities and control them at will. To achieve this goal, we combine wearable devices which allows us to collect external and internal biological information, machine learning techniques, and sensory and brain stimulation methods. In the future, we further expand this idea to develop a new technology that helps us to acquire new abilities that humans have never had before, and to implement it in society.

PUBLICATIONS

PREPRINTS

  1. Protopapa F, Kulashekhar S, Hayashi MJ, Kanai R, Bueti D (2022) Effective connectivity in a duration selective cortico-cerebellar network. Research Square. [Full text]
  2. Kawashima T, Hayashi MJ, Amano K (2022) Attentional rhythmic blink: Theta/Alpha balance in neural oscillations determines the rhythmicity in visual sampling. bioRxiv. [Full text]

PAPERS

     
  1. Kawashima T, Shibusawa S, Hayashi MJ, Ikeda T, Tanaka S (2023) Recent advances in brain stimulation techniques: The interface with cognitive psychology. The Japanese Journal of Cognitive Psychology, 20(2): 1-11. (Japanese) [Link]
  2. Li L, Yotsumoto Y, Hayashi MJ (2022) Temporal perceptual learning distinguishes between empty and filled intervals. Scientific Reports, 12: 9824. [PubMed] [Full text]
  3. Kimura I, Ugawa Y, Hayashi MJ*, Amano K* (2022) Quadripulse stimulation: A replication study with a newly developed stimulator. Brain Stimulation, 15(3): 579-581. *Equal contribution. [PubMed] [Full text]
  4. Kimura I, Oishi H, Hayashi MJ*, Amano K* (2022) Microstructural properties of human brain revealed by fractional anisotropy can predict the after-effect of intermittent theta burst stimulation. Cerebral Cortex Communications, 3(1): tgab065. *Equal contribution. [PubMed] [Full text]
  5. Sugiyama S, Gallego-Hiroyasu EM, Nomura K, Hayashi MJ, Yotsumoto Y (2021) Longitudinal evaluation of the impact of the COVID-19-associated confinement on loneliness, anxiety, and sleep in a Japanese population. The Japanese Journal of Psychology, 92(5): 397-407. (Japanese) [Full text]
  6. Hayashi MJ, Ivry RB (2020) Duration selectivity in right parietal cortex reflects the subjective experience of time. Journal of Neuroscience, 40(40): 7749-7758. [PubMed] [Full text] [Covered in Nature as "Research Highlight"]
  7. Protopapa F, Hayashi MJ, Kulashekhar S, van der Zwaag W, Battistella G, Murray MM, Kanai R, Bueti D (2019) Chronotopic maps in human supplementary motor area. PLoS Biology, 17(3): e3000026. [PubMed] [Full text] [Recommended in Faculty Opinions]
  8. Hayashi MJ, van der Zwaag W, Bueti D, Kanai R (2018) Representations of time in human frontoparietal cortex. Communications Biology, 1(1): 233. [PubMed] [Full text]
  9. Kanaya S, Hayashi MJ, Whitney D (2018) Exaggerated groups: Amplification in ensemble coding of temporal and spatial features. Proceedings of the Royal Society B, 285(1879). [PubMed] [Full text]
  10. Okamoto Y, Kosaka H, Kitada R, Seki A, Tanabe HC, Hayashi MJ, Kochiyama T, Saito DN, Yanaka HT, Munesue T, Ishitobi M, Omori M, Wada Y, Okazawa H, Koeda T, and Sadato N (2017) Age-dependent abnormalities in body- and face-sensitive activation of the EBA and FFA in individuals with ASD. Neuroscience Research, 119: 38-52. [PubMed] [Full text]
  11. Hayashi MJ (2016) Brain mechanisms for measuring time: Population coding of durations. Brain Nerve, 68(11): 1385-1391. (Japanese) [Full text]
  12. Hayashi MJ, Ditye T, Harada T, Hashiguchi M, Sadato N, Carlson S, Walsh V, Kanai R (2015) Time adaptation shows duration selectivity in the human parietal cortex. PLoS Biology, 13(9): e1002262. [PubMed] [Full text]
  13. Okamoto Y, Kitada R, Tanabe HC, Hayashi MJ, Kochiyama T, Munesue T, Ishitobi M, Saito DN, Yanaka HT, Omori M, Wada Y, Okazawa H, Sasaki AT, Morita T, Itakura S, Kosaka H, Sadato N (2014) Attenuation of the contingency detection effect in the extrastriate body area in Autism Spectrum Disorder. Neuroscience Research, 87: 66-76. [PubMed] [Full text]
  14. Hayashi MJ, Kantele M, Walsh V, Carlson S, Kanai R (2014) Dissociable neuroanatomical correlates of subsecond and suprasecond time perception. Journal of Cognitive Neuroscience, 26(8): 1685-1693. [PubMed] [Full text]
  15. Yoshida Y, Tanabe HC, Hayashi MJ, Kawamichi H, Kochiyama T, Sadato N (2013) The neural substrates of the warning effect: A functional magnetic resonance imaging study. Neuroscience Research, 76(4): 230-239. [PubMed] [Full text]
  16. Sakai H, Uchiyama Y, Shin D, Hayashi MJ, Sadato N (2013) Neural activity changes associated with impulsive responding in the sustained attention to response task. PLoS One, 8(6): e67391. [PubMed] [Full text]
  17. Hayashi MJ, Valli A, Carlson S (2013) Numerical quantity affects time estimation in the suprasecond range. Neuroscience Letters, 543: 7-11. [PubMed] [Full text]
  18. Hayashi MJ, Kanai R, Tanabe HC, Yoshida Y, Carlson S, Walsh V, Sadato N (2013) Interaction of numerosity and time in prefrontal and parietal cortex. Journal of Neuroscience, 33(3): 883-893. [PubMed] [Full text]
  19. Tanabe HC*, Kosaka H*, Saito DN, Koike T, Hayashi MJ, Izuma K, Komeda H, Ishitobi M, Omori M, Munesue T, Okazawa H, Wada Y, Sadato N (2012) Hard to “tune in”: neural mechanisms of eye contact and joint attention in high-functioning autistic spectrum disorder. Frontiers in Human Neuroscience, 6: 268. *Equal contribution. [PubMed] [Full text]
  20. Saito DN*, Tanabe HC*, Izuma K, Hayashi MJ, Morito Y, Komeda H, Uchiyama H, Kosaka H, Okazawa H, Fujibayashi Y, Sadato N (2010) “Stay-tuned”: inter-individual neural synchronization during gaze and joint attention. Frontiers in Integrative Neuroscience, 4: 127. *Equal contribution. [PubMed] [Full text]
  21. Hayashi MJ, Saito DN, Aramaki Y, Asai T, Fujibayashi Y, Sadato N (2008) Hemispheric asymmetry of frequency-dependent suppression in the ipsilateral primary motor cortex during finger movement: A functional magnetic resonance imaging study. Cerebral Cortex, 18(12): 2932-2940. [PubMed] [Full text]

BOOKS

  1. Hayashi MJ. Q&A–神経科学の素朴な疑問. Clinical Neuroscience(Chugai-igakusha) 40(2), Feb 2022. (Japanese)
  2. Hayashi MJ. 素顔のニューロサイエンティスト. Clinical Neuroscience(Chugai-igakusha) 36(124), Jan 2018. (Japanese)
  3. Hayashi MJ. 時間感覚を担う脳領域. Clinical Neuroscience(Chugai-igakusha) 33, May 2015. (Japanese)

FACILITIES

COMMON FACILITIES

Magnetic Resonance Imaging

Siemens Prisma, PrismaFit, Vida (3 Tesla)
Siemens MR7T900PS(7 Tesla)

Magnetoencephalography

Elekta Neuromag 360-channel MEG System

LAB FACILITIES

Transcracial Magnetic Stimulation

Magstim 2002, BiStim
Deymed DuoMAG MP-Quad

TMS Navigation System

Rogue Research Brainsight

TMS Cobot

Axilum TMS-Cobot

Transcranial Static Magnetic Stimulation

Neurek MAG45r+, MAG50r+

Transcranial electrical stimulation (tDCS/tACS) devices, an electroencephalography (EEG) system, eye trackers, and sound-proof experimental rooms are also available.

TEAM

RESEARCHER

Masamichi HAYASHI, Ph.D.

Principal Investigator
Researcher (tenure-track), CiNet
Guest Associate Professor, Graduate School of Frontier Biosciences, Osaka University

  • subjectivity
  • perception of time and space
  • brain
  • human augmentation

COOPERATIVE VISITING RESEARCHER

Teruaki KIDO

Graduate student, Graduate School of Arts and Sciences, The University of Tokyo
JSPS Research Fellow (DC1)

  • neuroimaging
  • Bayesian inference
  • neural representation of information

Masakazu SUGIMOTO

Graduate student, Graduate School of Frontier Biosciences, Osaka University

  • brain stimulation
  • MRI
  • time perception
  • cognitive neuroscience

Kohhei HOSOYA

Graduate student, Graduate School of Frontier Biosciences, Osaka University

  • rate perception
  • neuroimaging
  • neuroimaging

Ryo KANECHI

Graduate student, Graduate School of Frontier Biosciences, Osaka University

  • duration perception
  • temporal resolution
  • psychophysics

Tomoki TAKAHASHI

Graduate student, Graduate School of Frontier Biosciences, Osaka University

  • numerosity perception
  • synesthesia
  • multisensory integration

TECHNICAL STAFF

Natsuha FUJIHARA

Administrative Specialist, CiNet

INTERN

Noah NAKANISHI

Faculty of Letters, Kyoto University

Masaki TERANISHI

School of Medicine, Nagoya University

COLLABORATOR

Kaoru AMANO

Professor at The University of Tokyo

Tomoya KAWASHIMA

Assistant Professor at Osaka University

Yuko YOTSUMOTO

Professor at The University of Tokyo

Ryota KANAI

CEO at ARAYA Inc.

Domenica BUETI

Professor at SISSA

Ikko KIMURA

Special Postdoctoral Researcher at RIKEN

ALUMNI

Naoto ICHIKAWA

Techniacal Staff
Nov 2022 – Mar 2023

Shihomi KAWASAKI

Techniacal Staff
Jun 2022 – Mar 2023

VACANCIES

There are several funding opportunities available for prospective PhD students and postdocs. Intern students from foreign countries are also welcomed. If you are interested in joining our team, please feel free to contact us! For the funding opportunities, please refer to this page.

For more information, please contact: m.hayashi[at]nict.go.jp

ACCESS

CONTACT

Center for Information and Neural Networks
1-4 Yamadaoka, Suita City, Osaka, 565-0871
E-mail:m.hayashi[at]nict.go.jp

See here for directions to CiNet from Kansai International
Airport

MAP