CiNet 西田グループ

Preprints

  1. Nishida S, Hamada HT, Niikawa T, Miyahara K. Neural correlates of phenomenological attitude toward perceptual experience. bioRxiv:2024.07.07.602347. https://www.biorxiv.org/content/10.1101/2024.07.07.602347
  2. Wang J, Kawahata K, Blanc A, Maeda N, Nishimoto S, Nishida S. Asymmetric representation of symmetric semantic information in the human brain. bioRxiv:2024.02.09.579613, 2024. https://doi.org/10.1101/2024.02.09.579613
  3. Kawahata K, Wang J, Blanc A, Maeda N, Nishimoto S, Nishida S. Decoding Individual Differences in Mental Information from Human Brain Response Predicted by Convolutional Neural Networks. bioRxiv:2022.05.16.492029, 2022. https://www.biorxiv.org/content/10.1101/2022.05.16.492029
  4. Nishida S, Toyoda S, Honda C, Watanabe M, Ollikainen M, Vuoksimaa E, Kaprio J, Nishimoto S. Genetic influences on brain representations of natural audiovisual experiences. Research Square, 2021. https://doi.org/10.21203/rs.3.rs-902535/v2
  5. Nishida S, Matsumoto Y, Yoshikawa N, Son S, Murakami A, Hayashi R, Nishimoto S, Takahashi H. Reduced intra- and inter-individual diversity of semantic representations in the brains of schizophrenia patients. bioRxiv:2020.06.03.132928. https://www.biorxiv.org/content/10.1101/2020.06.03.132928v1

Journal Papers

  1. Nishida S. Behavioral and neural evidence for the underestimated attractiveness of faces synthesized using an artificial neural network. Computers in Human Behavior: Artificial Humans, 2024. https://doi.org/10.1016/j.chbah.2024.100104
  2. Hayashi R, Kaji S, Matsumoto Y, Nishida S, Nishimoto S, Takahashi H. Homogenization of word relationships in schizophrenia: Topological analysis of cortical semantic representations. Psychiatry and Clinical Neurosciences, 78(11):687-695, 2024. https://doi.org/10.1111/pcn.13727
  3. Matsumoto Y, Nishida S, Hayashi R, Son S, Murakami A, Yoshikawa N, Ito H, Oishi N, Masuda N, Murai T, Friston K, Nishimoto S, Takahashi H. Disorganization of semantic brain networks in schizophrenia revealed by fMRI. Schizophrenia Bulletin, Schizophrenia Bulletin, sbac157, 2022. https://doi.org/10.1093/schbul/sbac157
  4. 西田知史. 日常的な認知に関わる脳情報処理のモデル化と人工脳への応用. 情報通信研究機構研究報告 68(1): 11–19, 2022.
  5. Shinkuma R, Nishida S, Maeda N, Kado M, Nishimoto S. Reduction of information collection cost for inferring brain model relations from profile. IEEE Transactions on Systems, Man and Cybernetics: Systems, 52(7):4057–4068, 2022. https://ieeexplore.ieee.org/document/9487498 | プレスリリース
  6. Niikawa T, Miyahara K, Hamada HT, Nishida S. Functions of Consciousness: Conceptual Clarification. Neuroscience of Consciousness, 2022(1): niac006, 2022. https://doi.org/10.1093/nc/niac006
  7. Nishida S, Blanc A, Maeda N, Kado M, Nishimoto S. Behavioral correlates of cortical semantic representations modeled by word vectors. PLOS Computational Biology 17(6): e1009138, 2021. https://doi.org/10.1371/journal.pcbi.1009138
  8. Ikutani Y, Kubo T, Nishida S, Hata H, Matsumoto K, Ikeda K, Nishimoto S. Expert programmers have fine-tuned cortical representations of source code. eNeuro 8(1): ENEURO.0405-20.2020, 2021. https://doi.org/10.1523/ENEURO.0405-20.2020 | プレスリリース
  9. Niikawa T, Miyahara K, Hamada HT, Nishida S. A new experimental phenomenological method to explore the subjective features of psychological phenomena: its application to binocular rivalry. Neuroscience of Consciousness 2020(1):niaa018, 2020. https://doi.org/10.1093/nc/niaa018
  10. Miyahara K, Niikawa T, Hamada HT, Nishida S. Developing a Short-term Phenomenological Training Program: A Report of Methodological Lessons. New Ideas in Psychology 58:100780, 2020. https://doi.org/10.1016/j.newideapsych.2020.100780
  11. Shinkuma R, Nishida N, Kado M, Maeda N, Nishimoto S. Relational network of people constructed on the basis of similarity of brain activities. IEEE Access 7(1):110258–110266, 2019. https://doi.org/10.1109/ACCESS.2019.2933990
  12. Nishida S, Nishimoto S. Decoding naturalistic experiences from human brain activity via distributed representations of words. NeuroImage 180(A):232– 242, 2018. https://doi.org/10.1016/j.neuroimage.2017.08.017 | プレスリリース
  13. 西本伸志, 西田知史. 視覚と認知をつかさどる脳機能の定量的理解とその応用に関する研究. 情報通信研究機構研究報告 64(1): 5–12, 2018. https://doi.org/10.24812/nictkenkyuhoukoku.64.1_5
  14. 西田知史, 西本伸志. 意味認知と脳内情報表現 (特集「脳科学とAIのフロンティア」). 人工知能 32(6):857–862, 2017. https://doi.org/10.11517/jjsai.32.6_857
  15. 西田知史, 下川哲也, 小泉愛. 創薬医療に貢献するNICTの「脳情報科学×AI」研究開発. 日本化学会情報化学部会誌 35(2):168–173, 2017. https://doi.org/10.11546/cicsj.35.168
  16. Nishimoto S, Nishida S. Lining up brains via a common representational space. Trends in Cognitive Sciences 20(8):565–567, 2016. https://doi.org/10.1016/j.tics.2016.06.001
  17. Tanaka T, Nishida S, Ogawa T. Different target-discrimination times can be followed by the same saccade-initiation timing in different stimulus conditions during visual searches. Journal of Neurophysiology 114(1):366–380, 2015. https://doi.org/10.1152/jn.00043.2015
  18. Koide N, Kubo T, Nishida S, Shibata T, Ikeda K. Art expertise reduces influence of visual salience on fixation in viewing abstract-paintings. PLOS ONE 10(2): e0117696, 2015. https://doi.org/10.1371/journal.pone.0117696
  19. Nishida S, Tanaka T, Ogawa T. Transition of target-location signaling in activity of macaque lateral intraparietal neurons during delayed-response visual search. Journal of Neurophysiology 112(6):1516–1527, 2014. https://doi.org/10.1152/jn.00262.2014
  20. Nishida S, Tanaka T, Shibata T, Ikeda K, Aso T, Ogawa T. Discharge-rate persistence of baseline activity during fixation reflects maintenance of memory-period activity in the macaque posterior parietal cortex. Cerebral Cortex 24(6):1671–1685, 2014. https://doi.org/10.1093/cercor/bht031
  21. Nishida S, Shibata T, Ikeda K. Object-based selection modulates top-down attentional shifts. Frontiers in Human Neuroscience 8:90, 2014. https://doi.org/10.3389/fnhum.2014.00090
  22. Nishida S, Tanaka T, Ogawa T. Separate evaluation of target facilitation and distractor suppression in the activity of macaque lateral intraparietal neurons during visual search. Journal of Neurophysiology 110(12):2773–2791, 2013. https://doi.org/10.1152/jn.00360.2013
  23. Tanaka T, Nishida S, Aso T, Ogawa T. Visual response of neurons in the lateral intraparietal area and saccadic reaction time during a visual detection task. European Journal of Neuroscience 37(6):942–956, 2013. https://doi.org/10.1111/ejn.12100
  24. Fujimoto A, Nishida S, Ogawa T. Saccade dynamics in error trials during visual search. Advances in Cognitive Neurodynamics (III): Proceedings of the Third International Conference on Cognitive Neurodynamics 575–581, 2013. https://doi.org/10.1007/978-94-007-4792-0_77
  25. Fujimoto A, Nishida S, Ogawa T. Dynamic alternation of primate response properties during trial-and-error knowledge updating. Robotics and Autonomous Systems 60(5):747–753, 2012. https://doi.org/10.1016/j.robot.2011.06.014
  26. Nishida S, Shibata T, Ikeda K. Prediction of human eye movements in facial discrimination tasks. Artificial Life and Robotics 14(3):348–351, 2009. https://doi.org/10.1007/s10015-009-0679-9

Conference Papers

  1. Kawasaki H, Nishida S, Kobayashi I. Exploring Hierarchical Changes in Functional Brain Network Hubs through Brain-Activity Prediction with Convolutional Neural Networks. Proceedings of 2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 4740–4745, 2023. https://doi.org/10.1109/SMC53992.2023.10394163
  2. Kawasaki H, Nishida S, Kobayashi I. Hierarchical Processing of Visual and Language Information in the Brain. Proceedings of AACL-IJCNLP 2022, 405–410, 2022. https://aclanthology.org/2022.findings-aacl.38
  3. Nishida S, Nakano Y, Blanc, A, Maeda N, Kado M, Nishimoto S. Brain-mediated Transfer Learning of Convolutional Neural Networks. Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence 34(4):5281–5288, 2020. https://doi.org/10.1609/aaai.v34i04.5974
  4. Matsuo E, Kobayashi I, Nishimoto S, Nishida S, Asoh H. Describing Semantic Representations of Brain Activity Evoked by Visual Stimuli. Proceedings of 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 576–583, 2018. https://doi.org/10.1109/SMC.2018.00107
  5. Kawase C, Kobayashi I, Nishimoto S, Nishida S, Asoh H. Semantic representation in the cerebral cortex with sparse coding. Proceedings of 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC) 606–611, 2017. https://doi.org/10.1109/SMC.2017.8122673
  6. Matsuo E, Kobayashi I, Nishimoto S, Nishida S, Asoh H. Generating Natural Language Descriptions for Semantic Representations of Human Brain Activity. Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (ACL) – Student Research Workshop 22–29, 2016. https://doi.org/10.18653/v1/P16-3004

Presentations

  1. Maeda C, Abe T, Nishida S. Enhancing Emotion Prediction via Self-supervised Learning using Neural Data. International Conference on Biomedical and Health Informatics 2024. Tainan, Taiwan. Nov 1, 2024.
  2. 岡田心, 新川拓哉, 西田知史. 生成AIとインタビューを用いた顔のリアリティ判断に関わる規範的特徴の探索. 日本質的心理学会第21回大会, 東京. 2024年10月20日.
  3. Oishi T, Shinkuma R, Maeda N, Nishida S. Brain-information based grouping for preference estimation in video. ニューロコンピューティング研究会, NC2024-33. 仙台. 2024年9月27日.
  4. 岡田心, 新川拓哉, 西田知史. 生成AIとインタビューを用いた顔のリアリティ判断で着目する特徴の探索. ナラティブ意識学ワークショップ「脳・言語・意識」, 13. 釧路, 北海道.2024年9月24日.
  5. 阿部武, 前田千結, 西田知史. Emotion Prediction via Transfer Learning with a Self-supervised Model Pretrained on Large-scale Neural Data. ナラティブ意識学ワークショップ「脳・言語・意識」, 11. 釧路, 北海道.2024年9月24日.
  6. Takeshima H, Kawahata K, Blanc A, Nishimoto S, Nishida S. Brain-mediated Transfer Learning Enhances Brain-like Information Representations More Effectively in More Advanced Deep Neural Networks. ナラティブ意識学ワークショップ「脳・言語・意識」, 5. 釧路, 北海道.2024年9月24日.
  7. 前田千結, 西田知史. 音楽の好みに関連する神経表現の解明. ナラティブ意識学ワークショップ「脳・言語・意識」, 3. 釧路, 北海道.2024年9月24日.
  8. Wang J, Kawahata K, Blanc A, Nishimoto S, Nishida S. Nonlinear processing of semantic information across the human brain revealed by asymmetric representations of semantic symmetry. ナラティブ意識学ワークショップ「脳・言語・意識」, 2. 釧路, 北海道.2024年9月24日.
  9. Yokoi A, Toyoda S, Nishida S, Nshimoto S, Encoding of semantic information in pupillary responses during naturalistic perceptual experiences. NEURO2024, 2P-117. 福岡. 2024年7月25日.
  10. Maeda C, Nishida S. Different neural substrates in the superior temporal cortex underlie inter- and intra-individual variations in human music preferences. NEURO2024, 1P-166. 福岡. 2024年7月24日.
  11. Nishida S, Hamada HT, Niikawa T, Miyahara K. How the Brain Performs Phenomenology: Neural Correlates of Phenomenological Attitude toward Conscious Experience. Aware and Alive. Sapporo, Japan. Jul 9, 2024.
  12. Hayashi R, Kaji S, Matsumoto Y, Nishida S, Nishimoto S, Takahashi H. Topological data analysis of cortical word representations in health and schizophrenia. FENS Forum 2024, PS05-28AM-453. Vienna, Austria. Jun 28, 2024.
  13. Wang J, Kawahata K, Blanc A, Nishimoto S, Nishida S. Symmetric semantic information is represented in asymmetric and heterogeneous patterns across the human brain. FENS Forum 2024, PS04-27PM-227. Vienna, Austria. Jun 27, 2024.
  14. Maeda C, Nishida S. Neural correlates of individual differences in music preferences. FENS Forum 2024, PS02-26PM-501. Vienna, Austria. Jun 26, 2024.
  15. 柴田宏誠, 鴛海航, 藤原正幸, 西田知史, 我妻広明. 画像解析における印象の共通特性と個人的差異を明らかにするオントロジー概念階層を用いたアノテーション手法の検討, ニューロコンピューティング研究会, NC2024-24. 那覇. 2024年6月21日.
  16. 西田知史. 人間との関係性からAIの信頼を再考する. 2024年度人工知能学会全国大会, 企画セッション「信頼されない?AI #1 ~社会とAIの新しいつながりを考える~」. 浜松. 2024年5月30日.
  17. Wang J, Nishida S. Artificiality is perceptually associated with trustworthiness but not attractiveness in AI-synthesized faces. 2024年度人工知能学会全国大会, 3Xin2. 浜松. 2024年5月30日.
  18. 西田知史. 脳情報の可視化とシミュレーション—個性の理解と模倣に向けて—. ホンダCiNet講演会. 宇都宮. 2024年4月23日.
  19. 八木俊匡, 西田知史. コーヒーを学問する. 神戸大学 V.Schoolサロン. 神戸. 2024年3月28日.
  20. 西田知史. 脳情報の可視化とAIへの応用, 超異分野学会2024東京・関東大会, P-057. 東京. 2024年3月8日.
  21. Maeda C, Nishida S. fMRI signals in the superior temporal cortex separately reflect inter- and intra-individual variations in music preferences. The 9th CiNet Conference: Cutting Edges of Cognitive and Action Information Processing. Osaka, Japan. Feb 14, 2024.
  22. 阿部武, 西田知史. Masked Auto Encoder と対照学習を用いたfMRI データの次元圧縮法と脳媒介パターン認識への応用, ニューロコンピューティングけ研究会, NC2023-42. 鳴門, 徳島. 2024年1月24日.
  23. Maeda C, Nishida S. Variations in Personal Music Tastes are Reflected in the Synchronization of fMRI Signals across Individuals, 脳と心のメカニズム第23回冬のワークショップ. ルスツ, 北海道. 2024年1月9日.
  24. Kawasaki H, Nishida S, Kobayashi I. Localization and Representation of Visual and Language Information in the Human Brain. International Symposium on Advanced Intelligent Systems (ISIS) 2023, FA3-2. Gwangju, Korea. Dec 8, 2023. (Best Presentation Award受賞)
  25. 西田知史. 意味・感性に関わる脳内情報の可視化とその応用. JEITA感性のセンシング・インタラクション技術分科会. 東京. 2023年10月18日.
  26. Kawasaki H, Nishida S, Kobayashi I. Exploring Hierarchical Changes in Functional Brain Network Hubs through Brain-Activity Prediction with Convolutional Neural Networks. IEEE SMC 2023, We-PS20-T13.5. Hawaii, US. Oct 4, 2023.
  27. Wang J, Nishida S. Individual variability in AI anxiety reflected in intersubject synchronization of movie-evoked fMRI signals. IBRO 2023, AS13-A19. Granada, Spain. Sep 11, 2023.
  28. Maeda C, Nishida S. Diversity of music preferences is reflected in intersubject synchronization of fMRI signals. IBRO 2023, AS13-A13. Granada, Spain. Sep 9, 2023.
  29. 川﨑春佳, 西田知史, 小林一郎. ヒト脳内における視覚・意味情報の局在と表現の調査. 第39回ファジィシステムシンポジウム (FSS2023), 2C1-1. 軽井沢. 2023年9月6日.
  30. Oshiumi W, Ariyoshi M, Nishida S, Wagatsuma H. A Fusion of Image Captioning Techniques Based on Ontologies and Semantic Networks Toward Human-Like Comprehension. 第33回日本神経回路学会全国大会. 東京. 2023年9月4日.
  31. Hayashi R, Kaji S, Matsumoto Y, Nishida S, Nishimoto S, Takahashi H. Homogeneous concept connections across multiple scales in word representation space of schizophrenia patients revealed by topological analysis of functional magnetic resonance imaging. 第33回日本神経回路学会全国大会. 東京. 2023年9月4日.
  32. 土井智暉, 宮原克典, 新川拓哉, 濱田太陽, 西田知史, 谷中瞳. 深層的特徴を考慮した自然言語処理による意識体験ナラティブ分析の試み. 第257回情報処理学会 自然言語処理(NL)研究発表会. 東京. 2023年9月1日.
  33. Maeda C, Nishida S. Intersubject synchronization of music-evoked fMRI signals reflects individual diversity in music preference. 第46回日本神経科学大会, 3Pm-145. 仙台. 2023年8月3日.
  34. Nishida S, Hamada HT, Niikawa T, Miyahara K. Neural mechanisms underlying phenomenological attitude toward conscious experience. 第46回日本神経科学大会, 3Pm-034. 仙台. 2023年8月3日.
  35. 大山翔、西田知史. 脳科学が拓く新たなビジネス領域:NeuroAIの開発~活用事例まで. 第5回 使えるセンサ・シンポジウム2023. 大阪. 2023年7月19日.
  36. Nishida S, Hamada HT, Niikawa T, Miyahara K. Neural signature of phenomenological attitude toward perceptual experience. The 26th Annual Meeting of the ASSC, New York, US. Jun 24, 2023.
  37. 羅桜, 西田知史, 小林一郎. The Music LP Dataset:受動的・能動的音楽刺激下のヒト脳活動に対する脳波計測. 2023年度人工知能学会全国大会, 3J1-GS-1-01. 熊本2023年6月8日.
  38. 川﨑春佳, 茂木比奈, 西田知史, 小林一郎. 音楽刺激下のヒト脳内における性差の調査. 2023年度人工知能学会全国大会, 2F1-GS-1-02. 熊本2023年6月7日.
  39. 川畑輝一, 王佳新, Blanc Antoine, 西本伸志, 西田知史. 脳融合BERT:脳活動予測を介してBERTの振る舞いを脳に近づける. 2023年度人工知能学会全国大会, 2J4-GS-1-04. 熊本2023年6月7日.
  40. 西田知史. 脳情報に基づいたAIの信頼性評価技術の開発. 2023年人工知能学会全国大会, 企画セッション「人工知能とトラスト」. 熊本. 2023年6月7日.
  41. 西田知史. AIに対する潜在的な不安感の個人差をもたらす脳内メカニズム. 2023年度人工知能学会全国大会, 1K4-OS-11a-01. 熊本. 2023年6月6日.
  42. 西田知史. 自然言語処理を用いた脳内意味情報の可視化とその応用. Computational Psycholinguistics Tokyo. 東京. 2023年5月22日.
  43. 西田知史. 自然知覚に関わる脳情報の数理モデリングとその応用. Spring School for Theoretical Biology 2023. 東広島. 2023年3月7日.
  44. 茂木比奈, 川﨑春佳, 羅桜, 西田知史, 小林一郎. 音楽刺激下の脳内情報処理における男女差の分析. 情報処理学会第85回全国大会, 7P-07. 調布. 2023年3月4日.
  45. 田口遥香, 西田知史, 西本伸志, 小林一郎. 注意機構を導入した特徴量抽出に基づく画像刺激下の脳内状態推定. 情報処理学会第85回全国大会, 5U-07. 調布. 2023年3月3日.
  46. Kawahata K, Wang J, Blanc A, Nishimoto S, Nishida S. Information transformation via brain-response prediction endows deep neural networks with more brain-like internal representations. 脳と心のメカニズム冬のワークショップ2023. ルスツ, 北海道. 2023年1月5日.
  47. 西田知史. 人工脳の構築へ向けた脳情報のモデル化. 応用脳科学アカデミー&ワークショップ, アドバンスコース「CiNet」第2回. オンライン. 2022年12月6日.
  48. Taguchi H, Nishida S, Nishimoto S, Kobayashi I. Validation of the Role of Attention Mechanism in Predicting Brain Activity. SCIS&ISIS2022, T-3-G-123. Mie, Japan. Dec 1, 2022.
  49. 西田知史. 言語や五感情報を統合できる脳情報空間モデルの作成技術. JST新技術説明会. オンライン. 2022年10月27日.
  50. 田口遥香, 西田知史, 西本伸志, 小林一郎. 脳内状態推定における注意機構の役割の検証. 第38回ファジィシステムシンポジウム (FSS2022), TB1-1. オンライン. 2022年9月15日. (優秀発表賞受賞)
  51. Wang J, Kawahata K, Blanc A, Nishimoto S, Nishida S. Asymmetry in Representations of Semantic Symmetry in the Human Brain. International Symposium on Artificial Intelligence and Brain Science 2022, B14. 沖縄, 2022年7月4日.
  52. Kawahata K, Wang J, Blanc A, Nishimoto S, Nishida S. Making information representations of deep neural networks more brain-like via models for brain-response prediction. International Symposium on Artificial Intelligence and Brain Science 2022, A08. 沖縄, 2022年7月4日.
  53. Wang J, Blanc A, Nishimoto S, Nishida S. Distributed, heterogeneous representations of semantically symmetric information in the human brain. Neuro2022, 3P-089. 沖縄, 2022年7月2日.
  54. Kawahata K, Wang J, Blanc A, Nishimoto S, Nishida S. Transforming information representations of deep neural networks to brain-like representations via models for brain-response prediction. Neuro2022, 3LBA-026. 沖縄, 2022年7月2日.
  55. Matsumoto Y, Nishida S, Hayashi R, Son S, Murakami A, Yoshikawa N, Ito H, Oishi N, Masuda N, Murai T, Friston K, Nishimoto S, Takahashi H. Randomization of semantic network in the brain of schizophrenia revealed by fMRI. Neuro2022, 1P-264. 沖縄, 2022年6月30日.
  56. 川畑輝一, BLANC Antoine, 西本伸志, 西田知史. 畳み込みニューラルネットワークによる脳活動予測を介した映像に対する嗜好の個人差推定. 第36回人工知能学会全国大会, 4K3-GS-1-01. 京都, 2022年6月17日.
  57. 西田知史. AI生成情報が人間の認知判断にもたらす負のバイアスとその脳内メカニズム. 第36回人工知能学会全国大会, 3F4-OS-23. 京都, 2022年6月16日. (大会優秀賞受賞)
  58. 西田知史. AIを「人間らしく」する脳情報融合. 大阪大学FBSコロキウム. オンライン. 2022年6月9日.
  59. Wang J, Blanc A, Nishimoto S, Nishida S. Symmetric pairs of semantic information are represented with little overlap in the human brain. 2022 Organization for Human Brain Mapping Annual Meeting, WTh084. Glasgow, UK. Jun 8, 2022.
  60. Oishi T, Sugano R, Shinkuma R, Maeda N, Nishida S. Relational model for video-content grouping based on brain-activity information. センサネットワークとモバイルインテリジェンス研究会, SeMI2022-7. 沖縄, 2022年5月26日.
  61. Kawahata K, Blanc A, Nishimoto S, Nishida S. Individual differences of natural perceptual content in the human brain can be estimated via brain response prediction using deep neural networks. The 7th CiNet Conference: New horizons in brain mapping, 1-3. Online. Feb 1, 2022.
  62. 川﨑春佳, 西田知史, 小林一郎. 深層学習を用いた脳内における視覚・意味情報の階層的処理の解明へ向けた取り組み. ニューロコンピューティングけ研究会, NC2021-32. オンライン. 2022年1月21日.
  63. 川畑輝一, BLANC Antoine, 前田直哉, 西本伸志, 西田知史. 畳み込みニューラルネットワークによる脳活動予測を介して脳内知覚情報の個人差を推定するシステム. ニューロコンピューティング研究会, NC2021-31. オンライン. 2022年1月21日.
  64. 西田知史. 脳科学とAIの融合. 第21期金曜サイエンスサロン第1回. 大阪. 2022年1月14日.
  65. Kuroda E, Nishimoto S, Nishida S, Kobayashi I. A Deep Generative Model imitating Predictive Coding in the Human Brain. The 22nd International Symposium on Advanced Intelligent Systems, G04-4. Online. Dec 16, 2021. (Best Session Award受賞)
  66. 西田知史. 自然知覚に関わる脳情報の定量化とAIへの応用. 北陸先端科学技術大学院大学 知識科学系セミナー. 石川. 2021年12月3日.
  67. 西田知史. 脳科学と人工知能の融合. 応用脳科学アカデミー&ワークショップ, アドバンスコース「CiNet」第2回. オンライン. 2021年10月6日.
  68. Kawahata K, Blanc A, Nishimoto S, Nishida S. Decoding individual differences of perceptual experiences from human brain response predicted by deep neural networks. 第5回ヒト脳イメージング研究会. オンライン. 2021年9月17日. (若手奨励賞受賞)
  69. Iwasaka D, Shinkuma R, Nishimoto S, Nishida S. Brain model-based grouping system toward estimating people's content preferences. 2021年電子情報通信学会ソサイエティ大会, B-11-22. オンライン. 2021年9月15日.
  70. 隅⽥莉⾹⼦, ⼭⼝裕⼈, 中井智也, ⻄本伸志, ⻄⽥知史, ⼩林⼀郎. 聴覚と視覚からなる⾔語刺激下の脳活動状態推定による活動領域の⽐較. 第37回ファジィシステムシンポジウム (FSS2021), P5(WE2-1). オンライン. 2021年9月13日. (ポスター・デモセッション最優秀賞受賞)
  71. ⽥⼝遥⾹, ⻄⽥知史, ⻄本 伸志, ⼩林 ⼀郎. 画像刺激下の脳活動状態推定における深層学習モデルの基礎的考察. 第37回ファジィシステムシンポジウム (FSS2021), P2(TC2-1). オンライン. 2021年9月13日.
  72. 新川拓哉, 宮原克典, 濱田太陽, 西田知史. 意識の機能をめぐる概念的明確化. 日本認知科学会第38回大会, P2-46. オンライン. 2021年9月5日.
  73. Toyoda S, Nishida S, Honda C, Watanabe M, Ollikainen M, Vuoksimaa E, Kaprio J, Osaka Twin Research Group, Nishimoto S. Genetic effects on individual differences of natural audiovisual representations in the brain. The 80th Fujihara Seminar: Molecular and cellular mechanisms of brain systems generating individuality. Online. Aug 30, 2021.
  74. Nishida S, Toyoda S, Honda C, Watanabe M, Ollikainen M, Vuoksimaa E, Kaprio J, Osaka Twin Research Group, Nishimoto S. Genetic effects on natural audiovisual representations in widespread brain regions. 第44回日本神経科学大会, 1P-035. 神戸. 2021年7月28日.
  75. 黒田 彗莉, 西本 伸志, 西田 知史, 小林 一郎. 予測符号化を模倣する深層生成学習モデル構築に向けた基礎的検討. 情報処理学会 第83回全国大会, 1R-07. オンライン開催, 2021年3月18日.

2020年以前の発表については西田の個人Webサイトをご覧ください。
Please see Satoshi Nishida’s website for information about presentations before 2020.