Mailing address:
4-2-1 Nukui-kita, Koganei, Tokyo 184-8795, JAPAN.
Terahertz Laboratory, Terahertz Technology Research Center,
National Institute of Information and Communications Technology (NICT)

YAMADA Takayoshi
山田 崇貴

山田 崇貴
Dr. (Doctor of Science)
Terahertz Laboratory, Terahertz Technology Research Center, NICT
Tel: +81 -(0)42-327-7360
Short Bio:
YAMADA Takayoshi is an atmospheric scientist and is currently responsible for the TEREX measurement development and retrieval algorithms. His research interests are centered on physics of Terahertz radiations in space and planetary atmosphere. Most of his work has focused on the terahertz radiative transfer simulation in the atmosphere of the Earth, Jupiter Icy moons, and Mars. Before becoming current position, he wrote a doctoral thesis “Development of radiative transfer model and data analysis for a THz remote sensing to reveal discharge phenomena and radiation processes in rarefied atmosphere between planet and space”



山田崇貴, 2017年 第14回アジア・オセアニア地球科学国際学会(AOGS2017) 学生発表優秀賞, “Development of Radiative Transfer Simulation Including a Non-LTE Model for THz Observations of Ganymede‘s Atmosphere”

山田崇貴, 2017年 第23回日本大気化学討論会 学生発表優秀賞, “木星氷衛星THz観測における非局所熱平衡放射伝達モデルの構築. ”



15. Yamada, T., Baron, P., Neary, L., Nishibori, T., Larsson, R., Kuroda, T., Daerden, F., and Kasai, Y.: Observation Capability of a Ground-Based Terahertz Radiometer for Vertical Profiles of Oxygen and Water Abundances in Martian Atmosphere, IEEE Transactions on Geoscience and Remote Sensing, 60, 1-11, 2022.

14. Nakagawa, M., Yamada, T., Sato, S., Kato, I., Nishibori, T., Harada, K., Taniguchi, T., Kawamoto, H., Nakamura, K., Kuhara, T., and Kasai, Y.: Development of a Molecular Assessment High-Resolution Observation Spectrometer (MAHOS) for Microsatellites, IEEE Journal on Miniaturization for Air and Space Systems, 3(1), 19-28, 2022.


13. Nakagawa, M., Uchiyama, Y., Yamada, T., Nishibori, T., Ochiai, S., Mizuno, M., Uematsu, A., Sato, S., Nakano, Y., and Kasai, Y.: Compact 480-GHz Radiometer Calibration Unit With Specular Reflection Absorber for Atmospheric Remote Sensor On-Board Microsatellite, IEEE Transactions on Terahertz Science and Technology, 11, 5, 2021.

12. Winkler, H., Yamada, T., Kasai, Y., Berger, U., and Notholt J.: Model simulations of chemical effects of sprites in relation with observed HO2 enhancements over sprite-producing thunderstorms, Atmospheric Chemistry and Physics, 21(10), 7579-7596, 2021.


11. Yamada, T., Sato, T. O., Adachi, T., Winkler, H., Kuribayashi, K., Larsson, R., Yoshida, N., Takahashi, Y., Sato, M., Chen, A. B., Hsu, R. R., Nakano, Y., Fujinawa, T., Nara, S., Uchiyama, Y., and Kasai, Y.: HO2 generation above sprite-producing thunderstorms derived from low-noise SMILES observation spectra, Geophysical Research Letters, 47, e60090, 2020.

10. Nara, S., Sato, T. O., Yamada, T., Fujinawa, T., Kuribayashi, K., Manabe, T., Froidevaux, L., Livesey, N. J., Walker, K. A., Xu, J., Schreier, F., Orsolini, Y. J., Limpasuvan, V., Kuno, N., and Kasai, Y.: Validation of SMILES HCl profiles over a wide range from the stratosphere to the lower thermosphere, Atmospheric Measurement Techniques, 13, 6837-6852, 2020.

9. Fujinawa, T., Sato, T. O., Yamada, T., Nara, S., Uchiyama, Y., Takahashi, K., Yoshida, N., and Kasai, Y.: Validation of acetonitrile (CH3CN) measurements in the stratosphere and lower mesosphere from the SMILES instrument on the International Space Station, Atmospheric Measurement Techniques, 13, 2119-2129, 2020.

8. 山田 崇貴, 笠井 康子, 中川 真秀, 佐藤 滋, 加藤 一郎, 内山 由侑基, 西堀 俊幸, 垣見 征孝, 岡田 望, 植松 明久, 早坂 絵美: 宇宙産業展開の基盤へ。超小型テラヘルツ波リモートセンシング技術, 電波技術協会誌報, 337, 18-21, 2020.


7. 笠井 康子, 山田 崇貴: 木星圏探査サブミリ波分光計 JUICE/SWI の挑戦 (特集 宇宙からの赤外線観測), 日本赤外線学会誌, 29, 37-42, 2019.

6. 笠井 康子, 山田 崇貴: テラヘルツ波リモートセンシング: 大気分子の純回転遷移間の非局所熱平衡問題を解く (新たな光技術で進展するリモートセンシング), Optical Society of Japan, 48, 187-192, 2019.


5. Yamada, T., Rezac, L., Larsson, R., Hartogh, P., Yoshida, N., and Kasai, Y.: Solving non-LTE problems in rotational transitions using the Gauss–Seidel method and its implementation in the Atmospheric Radiative Transfer Simulator, Astronomy & Astrophysics, 619, A181, 2018.

4. Iino, T., Yamada, T., Tanaka, Y.: A Simulation Study on Terahertz Continuum-Wave Observations of Neptune’s Atmosphere Focusing on Future ALMA Observations, 日本リモートセンシング学会誌, 38, 252-257, 2018.

3. Iino, T., Namiki, M., Yamada, T.: A feasibility study of exhaustive analysis of ALMA calibration data for the creation of big-data driven solar system astronomy, 日本赤外線学会誌, 7, 19-32, 2018.

2. Iino, T., Yamada, T.: Spatially Resolved Sub-millimeter Continuum Imaging of Neptune with ALMA, The Astronomical Journal, 155, 92, 2018.

1. Larsson, R., Kasai, Y., Kuroda, T., Sato, S., Yamada, T., Maezawa, H., Hasegawa, Y., Nishibori, T., Nakasuka, S., and Hartogh, P.: Mars submillimeter sensor on microsatellite: sensor feasibility study, Geoscientific Instrumentation, Methods and Data Systems, 7, 331-341, 2018.

background image
background image