Self organization mechanism of bio-molecular system

Self organization mechanism of bio-molecular system

Group leader:
Kazuhiro OIWA, Distinguished Researcher
/ 大岩和弘 主管研究員

We aim to understand the function of protein motors from a physical point of view. By using in vitro reconstitution system and single molecule measurement, we have greatly contributed to the progress of protein motor research. In in vitro reconstitution system, we reconstruct the functions of protein motors in vitro using the minimum components and measure their functions. In single molecule measurements, we capture only one molecule of protein motor and measure its mechanical and enzymatic properties. Furthermore, by combining structural analysis with functional measurements, we conduct integrative analyses covering from structure to function. We have published these findings in leading international science journals, including Nature. In addition, the importance of the research results was recognized, and in 2005, the 23rd Osaka Science Award was awarded. We also regard the protein motors as nanometer-scale functional materials and pursue interdisciplinary research aimed at engineering applications such as construction of active matter, bio-sensors, and ultra-compact actuators. These challenges lead to new development in the field of protein motor research. We are trying to create a new trend in ICT by proposing nobel concepts of information communication technology such as the molecular communication.

わたしたちは、タンパク質モータの機能を、物理学的視点から、最少要素を用いて試験管内で再構築、その解析を行う「in vitro 再構成実験系」と、一つのタンパク質モータ分子を捕捉して、その力学・酵素特性を計測する「単一分子計測手法」の発展に大きく寄与し、これらに構造解析手法を組み合わせることで、構造から機能まで幅広く解析を進めることに成功して、Nature誌をはじめとした国際一流誌に多数の成果を発表しています。また、これらの成果の重要性が認められ、2005年には第23回大阪科学賞を受賞しました。 さらに、タンパク質モータを機能素材として捉えて、センサーや超小型駆動装置などへの工学的応用を意識した領域融合的研究を進め、タンパク質モータ研究分野の新しい展開を試みており、分子通信という情報通信の新概念を提唱することで、世界的な新しい潮流を生み出すに至っています。

Dynein is a protein motor driving eukaryotic cilia and flagella

The driving force underlying the movement of living things is the protein motor. In general, there are three types of protein motors; myosin, generating driving force of muscle contraction, kinesin being involved in the intracellular transport of various cargoes in cells, and dynein creating the bending movement of flagella and cilia. We have been focusing on the movement of flagella and cilia for more than 30 years, and have been working on their mechanism and functional analysis. We have developed techniques to directly measure the mechanical properties of flagella, and have developed an experimental system that physically measures movement and force using purified protein motors. At present, we have extended the research to understand the principle of collective movement of protein motors that spontaneously create various ordered structures, and we aim to artificially create flagellar structure and movement.

生き物の動きの本体はタンパク質モータである。 タンパク質モータは基本として3種類あり、筋収縮の原動力であるミオシン、細胞内の物質輸送にかかわるキネシン、 そして鞭毛・繊毛の運動をつくり出すダイニンである。わたしたちは30年以上にわたり鞭毛・繊毛の動きに着目し、そのメカニズムと機能解析に取り組み続けている。 研究は鞭毛の力学特性を直に計測する技術開発にはじまり、タンパク質自体を用いて物理学的に測定する実験システムを開発するに至った。 現在、自発的に様々な秩序構造をつくり出すタンパク質の集団行動原理を追究し、人工的に鞭毛をつくり出すことを目指している。


It moves by a flagellum Chlamydomonas



Protein motors are excellent molecular machines. It is possible to move uni-directionally with high efficiency even under the thermal fluctuation.


The mechanism that nanometer-scael protein motors can create unidirectional motion within thermal fluctuations has not been fully understood yet.


The importance of dynein has increased in medical researches because its dysfunction results in various disease implications. The fragility of dynein has, however, hampered the progress of dynein researches.

Dynein dysfunction causes a variety of diseases. In primary cilia dyskinesia (PCD) Ciliopathy, The incidence of the disease is estimated to be 1 in 16,000.

ダイニンの機能不全は様々な疾病を引き起こす。原発性線毛機能不全(Primary ciliary dyskinesia, PCD)繊毛病は1000人に1人が罹患する高頻度

Understanding the function of dynein is a medically important issue. The number of the publication on flagella and cilia has increased by about 3 times since 2001.


The elucidation of the principle of the protein motor provides a new guideline for the construction of molecular machines.